blob: 71f52b306b8c4699ed7fa5d53e208defcb16a0d4 [file] [log] [blame]
from test_pytorch_common import TestCase, run_tests
import torch
import torch.onnx
from torch.onnx import utils, OperatorExportTypes, TrainingMode
from torch.onnx.symbolic_helper import _set_opset_version, _set_operator_export_type, _set_onnx_shape_inference
import torch.utils.cpp_extension
from test_pytorch_common import skipIfUnsupportedMinOpsetVersion, skipIfUnsupportedOpsetVersion
import caffe2.python.onnx.backend as backend
from verify import verify
import torchvision
import onnx
import io
import copy
import unittest
skip = unittest.skip
class TestUtilityFuns(TestCase):
opset_version = 9
def setUp(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
def _model_to_graph(self, model, input,
do_constant_folding=True,
example_outputs=None,
training=TrainingMode.EVAL,
operator_export_type=OperatorExportTypes.ONNX,
input_names=None,
dynamic_axes=None):
# Need disable onnx_shape_inference for this test because it puts const node to initializers.
_set_onnx_shape_inference(False)
utils._validate_dynamic_axes(dynamic_axes, model, None, None)
graph, params_dict, torch_out = utils._model_to_graph(model, input,
do_constant_folding=do_constant_folding,
_disable_torch_constant_prop=True,
operator_export_type=operator_export_type,
training=training,
example_outputs=example_outputs,
input_names=input_names,
dynamic_axes=dynamic_axes)
_set_onnx_shape_inference(True)
return graph, params_dict, torch_out
def test_is_in_onnx_export(self):
test_self = self
class MyModule(torch.nn.Module):
def forward(self, x):
test_self.assertTrue(torch.onnx.is_in_onnx_export())
raise ValueError
return x + 1
x = torch.randn(3, 4)
f = io.BytesIO()
try:
torch.onnx.export(MyModule(), x, f, opset_version=self.opset_version)
except ValueError:
self.assertFalse(torch.onnx.is_in_onnx_export())
def test_validate_dynamic_axes_invalid_input_output_name(self):
import warnings
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
utils._validate_dynamic_axes({"input1": {}, "output": {},
"invalid_name1": {}, "invalid_name2": {}},
None, ["input1", "input2"], ["output"])
messages = [str(warning.message) for warning in w]
assert "Provided key invalid_name1 for dynamic axes is not a valid input/output name" in messages
assert "Provided key invalid_name2 for dynamic axes is not a valid input/output name" in messages
assert len(messages) == 2
@skipIfUnsupportedMinOpsetVersion(11)
def test_split_to_slice(self):
class SplitModule(torch.nn.Module):
def forward(self, x, y, t):
splits = (x.size(1), y.size(1))
out, out2 = torch.split(t, splits, dim=1)
return out, out2
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.randn(2, 3)
y = torch.randn(2, 4)
t = torch.randn(2, 7)
graph, _, _ = self._model_to_graph(SplitModule(), (x, y, t), input_names=['x', 'y', 't'],
dynamic_axes={'x': [0, 1], 'y': [0, 1], 't': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::SplitToSequence"
def test_output_list(self):
class PaddingLayer(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, input_t):
# type: (Tensor) -> Tensor
for i in range(2):
input_t = input_t * 2
return input_t
input_t = torch.ones(size=[10], dtype=torch.long)
model = torch.jit.script(PaddingLayer())
example_output = model(input_t)
with self.assertRaises(RuntimeError):
torch.onnx.export(model,
(input_t, ),
"test.onnx",
opset_version=self.opset_version,
example_outputs=[example_output])
def test_constant_fold_transpose(self):
class TransposeModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = torch.transpose(a, 1, 0)
return b + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(3, 2)
graph, _, __ = self._model_to_graph(TransposeModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Transpose"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 1
def test_constant_fold_reduceL2(self):
class ReduceModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = torch.norm(a, p=2, dim=-2, keepdim=False)
return b + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(2, 3)
graph, _, __ = self._model_to_graph(ReduceModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::ReduceL2"
assert len(list(graph.nodes())) == 1
def test_constant_fold_reduceL1(self):
class NormModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = torch.norm(a, p=1, dim=-2)
return b + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(2, 3)
graph, _, __ = self._model_to_graph(NormModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::ReduceL1"
assert len(list(graph.nodes())) == 1
def test_constant_fold_slice(self):
class NarrowModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = torch.narrow(a, 0, 0, 1)
return b + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(1, 3)
graph, _, __ = self._model_to_graph(NarrowModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Slice"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 1
def test_constant_fold_slice_index_exceeds_dim(self):
class SliceIndexExceedsDimModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = a[1:10] # index exceeds dimension
return b + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(1, 3)
graph, _, __ = self._model_to_graph(SliceIndexExceedsDimModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Slice"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 1
def test_constant_fold_slice_negative_index(self):
class SliceNegativeIndexModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = a[0:-1] # index relative to the end
c = torch.select(a, dim=-1, index=-2)
d = torch.select(a, dim=1, index=0)
return b + x, c + d
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(1, 3)
graph, _, __ = self._model_to_graph(SliceNegativeIndexModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Slice"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
def test_constant_fold_gather(self):
class GatherModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = torch.select(a, dim=1, index=-2)
c = torch.index_select(a, dim=-2, index=torch.tensor([0, 1]))
return b + 1, c + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(1, 3)
model = GatherModule()
model(x)
graph, _, __ = self._model_to_graph(GatherModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Gather"
def test_constant_fold_unsqueeze(self):
class UnsqueezeModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
b = torch.unsqueeze(a, -2)
return b + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(1, 2, 3)
graph, _, __ = self._model_to_graph(UnsqueezeModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1, 2]})
for node in graph.nodes():
assert node.kind() != "onnx::Unsqueeze"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 1
def test_constant_fold_unsqueeze_multi_axies(self):
class PReluModel(torch.nn.Module):
def __init__(self):
super(PReluModel, self).__init__()
self.prelu = torch.nn.PReLU()
def forward(self, x):
a = torch.randn(2, 3, 4, 5, 8, 7)
return self.prelu(x) + a
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.randn(2, 3, 4, 5, 8, 7)
graph, _, __ = self._model_to_graph(PReluModel(), x, input_names=['x'],
dynamic_axes={'x': [0, 1, 2, 3, 4, 5]})
for node in graph.nodes():
assert node.kind() != "onnx::Unsqueeze"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 4
def test_constant_fold_squeeze_without_axes(self):
class SqueezeModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[[1., 2., 3.], [4., 5., 6.]]])
return torch.squeeze(a) + x + torch.squeeze(a)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(2, 3)
graph, _, __ = self._model_to_graph(SqueezeModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Squeeze"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 2
def test_constant_fold_squeeze_with_axes(self):
class SqueezeAxesModule(torch.nn.Module):
def forward(self, x):
a = torch.tensor([[[1., 2., 3.], [4., 5., 6.]]])
return torch.squeeze(a, dim=-3) + x
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(2, 3)
graph, _, __ = self._model_to_graph(SqueezeAxesModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Squeeze"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 1
def test_constant_fold_concat(self):
class ConcatModule(torch.nn.Module):
def forward(self, x):
# Why did I insert a Cast here? There appears to be intentional
# behavior in ONNX constant folding where constant tensors which
# are not attached to any known to be foldable onnx
# operations don't get extracted into the initializer graph. So
# without these casts, we will actually fail to pull out one of
# the constants, thus failing constant folding. I think the
# test is wrong but I don't have time to write a more correct
# test (I think the right way to go about the test is to setup
# a predicate for what invariant graphs should hold after
# constant folding, and then verify this predicate holds.
# I think the asserts below are an attempt at this predicate,
# but it is not right!)
#
# More commentary at
# https://github.com/pytorch/pytorch/pull/18698/files#r340107552
a = torch.tensor([[1., 2., 3.]]).to(torch.float)
b = torch.tensor([[4., 5., 6.]]).to(torch.float)
c = torch.cat((a, b), 0)
d = b + c
return x + d
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.ones(2, 3)
graph, _, __ = self._model_to_graph(ConcatModule(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Concat"
assert node.kind() != "onnx::Cast"
assert node.kind() != "onnx::Constant"
assert len(list(graph.nodes())) == 1
def test_constant_fold_lstm(self):
class GruNet(torch.nn.Module):
def __init__(self):
super(GruNet, self).__init__()
self.mygru = torch.nn.GRU(7, 3, 1, bidirectional=False)
def forward(self, input, initial_state):
return self.mygru(input, initial_state)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
input = torch.randn(5, 3, 7)
h0 = torch.randn(1, 3, 3)
graph, _, __ = self._model_to_graph(GruNet(), (input, h0), input_names=['input', 'h0'],
dynamic_axes={'input': [0, 1, 2], 'h0': [0, 1, 2]})
for node in graph.nodes():
assert node.kind() != "onnx::Slice"
assert node.kind() != "onnx::Concat"
assert node.kind() != "onnx::Unsqueeze"
if self.opset_version <= 12:
assert len(list(graph.nodes())) == 3
else:
# Unsqueeze op parameter "axes" as an input instead of as an attribute when opset version >= 13
assert len(list(graph.nodes())) == 4
def test_constant_fold_transpose_matmul(self):
class MatMulNet(torch.nn.Module):
def __init__(self):
super(MatMulNet, self).__init__()
self.B = torch.nn.Parameter(torch.ones(5, 3))
def forward(self, A):
return torch.matmul(A, torch.transpose(self.B, -1, -2))
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
A = torch.randn(2, 3)
graph, _, __ = self._model_to_graph(MatMulNet(), (A, ),
input_names=['A'], dynamic_axes={'A': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Transpose"
assert len(list(graph.nodes())) == 1
def test_constant_fold_reshape(self):
class ReshapeModule(torch.nn.Module):
def __init__(self, ):
super(ReshapeModule, self).__init__()
self.register_buffer("weight", torch.ones(5))
def forward(self, x):
b = self.weight.reshape(1, -1, 1, 1)
return x * b
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
x = torch.randn(4, 5)
graph, _, __ = self._model_to_graph(ReshapeModule(), (x, ),
input_names=['x'], dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Reshape"
assert len(list(graph.nodes())) == 1
def test_constant_fold_div(self):
class Module(torch.nn.Module):
def __init__(self, ):
super(Module, self).__init__()
self.register_buffer("weight", torch.ones(5))
def forward(self, x):
div = self.weight.div(torch.tensor([1, 2, 3, 4, 5]))
return div * x
x = torch.randn(2, 5)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, _, __ = self._model_to_graph(Module(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Div"
assert len(list(graph.nodes())) == 1
def test_constant_fold_mul(self):
class Module(torch.nn.Module):
def __init__(self, ):
super(Module, self).__init__()
self.register_buffer("weight", torch.ones(5))
def forward(self, x):
mul = self.weight.mul(torch.tensor([1, 2, 3, 4, 5]))
return mul / x
x = torch.randn(2, 5)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, _, __ = self._model_to_graph(Module(), (x, ), input_names=['x'],
dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Mul"
assert len(list(graph.nodes())) == 1
def test_constant_fold_add(self):
class Module(torch.nn.Module):
def __init__(self, ):
super(Module, self).__init__()
self.register_buffer("weight", torch.ones(5))
def forward(self, x):
add = self.weight + torch.tensor([1, 2, 3, 4, 5])
return add - x
x = torch.randn(2, 5)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, params_dict, __ = self._model_to_graph(
Module(), (x, ), do_constant_folding=True,
operator_export_type=OperatorExportTypes.ONNX,
input_names=['x'], dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
self.assertTrue(node.kind() != "onnx::Add")
self.assertEqual(len(list(graph.nodes())), 1)
params = list(params_dict.values())
self.assertEqual(len(params), 1)
weight = params[0]
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(weight, torch.tensor([2, 3, 4, 5, 6]))
def test_constant_fold_sub(self):
class Module(torch.nn.Module):
def __init__(self, ):
super(Module, self).__init__()
self.register_buffer("weight", torch.ones(5))
def forward(self, x):
sub = self.weight - torch.tensor([1, 2, 3, 4, 5])
return sub + x
x = torch.randn(2, 5)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, params_dict, __ = self._model_to_graph(
Module(), (x, ), do_constant_folding=True,
operator_export_type=OperatorExportTypes.ONNX, input_names=['x'], dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Sub"
self.assertEqual(len(list(graph.nodes())), 1)
params = list(params_dict.values())
self.assertEqual(len(params), 1)
weight = params[0]
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(weight, torch.tensor([0, -1, -2, -3, -4]))
def test_constant_fold_sqrt(self):
class Module(torch.nn.Module):
def __init__(self, ):
super(Module, self).__init__()
self.register_buffer("weight", torch.ones(5))
def forward(self, x):
sqrt = torch.sqrt(self.weight)
return sqrt / x
x = torch.randn(2, 5)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, _, __ = self._model_to_graph(Module(), (x, ), input_names=['x'], dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Sqrt"
assert len(list(graph.nodes())) == 1
def test_constant_fold_shape(self):
class ShapeModule(torch.nn.Module):
def __init__(self):
super(ShapeModule, self).__init__()
self.register_buffer("weight", torch.ones(5))
def forward(self, x):
shape = self.weight.shape[0]
return x + shape
x = torch.randn(2, 5)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, _, __ = self._model_to_graph(ShapeModule(), (x, ), input_names=['x'], dynamic_axes={'x': [0, 1]})
for node in graph.nodes():
assert node.kind() != "onnx::Shape"
assert len(list(graph.nodes())) == 1
def test_strip_doc_string(self):
class MyModule(torch.nn.Module):
def forward(self, input):
return torch.exp(input)
x = torch.randn(3, 4)
def is_model_stripped(f, strip_doc_string=None):
if strip_doc_string is None:
torch.onnx.export(MyModule(), x, f, opset_version=self.opset_version)
else:
torch.onnx.export(MyModule(), x, f, strip_doc_string=strip_doc_string,
opset_version=self.opset_version)
model = onnx.load(io.BytesIO(f.getvalue()))
model_strip = copy.copy(model)
onnx.helper.strip_doc_string(model_strip)
return model == model_strip
# test strip_doc_string=True (default)
self.assertTrue(is_model_stripped(io.BytesIO()))
# test strip_doc_string=False
self.assertFalse(is_model_stripped(io.BytesIO(), False))
# NB: remove this test once DataParallel can be correctly handled
def test_error_on_data_parallel(self):
model = torch.nn.DataParallel(torch.nn.ReflectionPad2d((1, 2, 3, 4)))
x = torch.randn(1, 2, 3, 4)
f = io.BytesIO()
with self.assertRaisesRegex(ValueError,
"torch.nn.DataParallel is not supported by ONNX "
"exporter, please use 'attribute' module to "
"unwrap model from torch.nn.DataParallel. Try "):
torch.onnx.export(model, x, f, opset_version=self.opset_version)
def test_export_mode(self):
class MyModule(torch.nn.Module):
def forward(self, x):
y = x + 1
return y
model = MyModule()
x = torch.randn(10, 3, 128, 128)
f = io.BytesIO()
# set mode to in inference mode and export in training mode
model.eval()
old_state = model.training
torch.onnx.export(model, (x,), f,
opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING)
# verify that the model state is preserved
assert model.training == old_state
# set mode to training mode and export in inference mode
model.train()
old_state = model.training
torch.onnx.export(model, (x,), f,
opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL)
# verify that the model state is preserved
assert model.training == old_state
def test_diagnose_export_mode(self):
class MyModule(torch.nn.Module):
def forward(self, x):
return torch.cumsum(x, dim=0)
model = MyModule()
x = torch.randn(2, 3, 4)
f = io.BytesIO()
# run export in diagnose mode
graph, unsupported_ops = utils._find_missing_ops_onnx_export(model, (x,), f,
opset_version=9)
iter = graph.nodes()
assert next(iter).kind() == "onnx::Constant"
assert next(iter).kind() == "prim::Constant"
assert next(iter).kind() == "aten::cumsum"
assert len(unsupported_ops) == 1
assert unsupported_ops == ["aten::cumsum"]
def test_aten_fallthrough(self):
# Test aten export of op with no symbolic
class Module(torch.nn.Module):
def forward(self, x):
return torch.triu(x)
x = torch.randn(2, 3, 4)
_set_opset_version(self.opset_version)
graph, _, __ = self._model_to_graph(Module(), (x, ),
operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH,
input_names=['x'], dynamic_axes={'x': [0, 1, 2]})
iter = graph.nodes()
assert next(iter).kind() == "onnx::Constant"
assert next(iter).kind() == "aten::triu"
def test_custom_op_fallthrough(self):
# Test custom op
op_source = """
#include <torch/script.h>
torch::Tensor custom_add(torch::Tensor self, torch::Tensor other) {
return self + other;
}
static auto registry =
torch::RegisterOperators("custom_namespace::custom_op", &custom_add);
"""
torch.utils.cpp_extension.load_inline(
name="custom_add",
cpp_sources=op_source,
is_python_module=False,
verbose=True,
)
class FooModel(torch.nn.Module):
def forward(self, input, other):
# Calling custom op
return torch.ops.custom_namespace.custom_op(input, other)
x = torch.randn(2, 3, 4, requires_grad=False)
y = torch.randn(2, 3, 4, requires_grad=False)
model = FooModel()
graph, _, __ = self._model_to_graph(model, (x, y),
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH,
input_names=['x', 'y'],
dynamic_axes={'x': [0, 1, 2], 'y': [0, 1, 2]})
iter = graph.nodes()
assert next(iter).kind() == "custom_namespace::custom_op"
def test_onnx_fallthrough(self):
# Test aten export of op with symbolic for aten
x = torch.randn(100, 128)
y = torch.randn(100, 128)
model = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
graph, _, __ = self._model_to_graph(model, (x, y),
operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH,
input_names=['x', 'y'],
dynamic_axes={'x': [0, 1], 'y': [0, 1]})
iter = graph.nodes()
assert next(iter).kind() == "onnx::Constant"
assert next(iter).kind() == "onnx::Constant"
assert next(iter).kind() == "aten::cosine_similarity"
def test_quantized_fallthrough(self):
# Test Quantized op
class QModule(torch.nn.Module):
def __init__(self):
super(QModule, self).__init__()
self.quant1 = torch.quantization.QuantStub()
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
res = self.quant1(x)
return self.dequant(res)
model = QModule()
torch.backends.quantized.engine = "qnnpack"
pt_inputs = (torch.randn(1, 2, 3, 4))
model.qconfig = torch.quantization.default_qconfig
q_model = torch.quantization.prepare(model, inplace=False)
q_model = torch.quantization.convert(q_model, inplace=False)
q_model.eval()
output = q_model(*pt_inputs)
graph, _, __ = self._model_to_graph(q_model, pt_inputs, example_outputs=output,
operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH,
input_names=['pt_inputs'],
dynamic_axes={'pt_inputs': [0, 1, 2, 3]})
iter = graph.nodes()
assert next(iter).kind() == "onnx::Constant"
assert next(iter).kind() == "onnx::Constant"
assert next(iter).kind() == "onnx::Constant"
assert next(iter).kind() == "aten::quantize_per_tensor"
assert next(iter).kind() == "aten::dequantize"
# prim::ListConstruct is exported as onnx::SequenceConstruct for opset >= 11
@skipIfUnsupportedOpsetVersion([11, 12, 13])
def test_prim_fallthrough(self):
# Test prim op
class PrimModule(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
if isinstance(x, list):
y = x
else:
y = [x]
return y
x = torch.tensor([2])
model = PrimModule()
output = model(x)
model.eval()
graph, _, __ = self._model_to_graph(model, (x,), example_outputs=output,
operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH,
input_names=['x'], dynamic_axes={'x': [0]})
iter = graph.nodes()
assert next(iter).kind() == "prim::ListConstruct"
def test_custom_layer_tuple(self):
class CustomFunction(torch.autograd.Function):
@staticmethod
def symbolic(g, input):
return g.op("CustomNamespace::Custom", input, outputs=2)
@staticmethod
def forward(ctx, input):
return input, input
class Custom(torch.nn.Module):
def forward(self, input):
return CustomFunction.apply(input)
model = Custom()
batch = torch.FloatTensor(1, 3)
graph, _, _ = self._model_to_graph(model, batch,
input_names=['batch'], dynamic_axes={'batch': [0, 1]})
iter = graph.nodes()
assert next(iter).kind() == "CustomNamespace::Custom"
def test_unused_initializers(self):
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv2 = torch.nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(1, 1))
self.k_proj = torch.nn.Linear(5, 5, bias=True)
def forward(self, x):
x = self.conv2(x)
return x
x = torch.randn(20, 16, 50, 100)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
_, params_dict, __ = self._model_to_graph(Model(), (x, ), do_constant_folding=False,
operator_export_type=OperatorExportTypes.ONNX,
input_names=['x'],
dynamic_axes={'x': [0, 1, 2, 3]})
assert len(params_dict) == 2
def test_scripting_param(self):
class MyModule(torch.nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.conv = torch.nn.Conv2d(3, 16, kernel_size=1, stride=2, padding=3, bias=True)
self.bn = torch.nn.BatchNorm2d(16, affine=True)
def forward(self, x):
x = self.conv(x)
bn = self.bn(x)
return bn
model = torch.jit.script(MyModule())
x = torch.randn(10, 3, 128, 128)
example_outputs = model(x)
f = io.BytesIO()
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, _, __ = self._model_to_graph(model, (x,), do_constant_folding=True, example_outputs=example_outputs,
operator_export_type=OperatorExportTypes.ONNX,
input_names=['x'], dynamic_axes={'x': [0, 1, 2, 3]})
graph_input_params = [param.debugName() for param in graph.inputs()]
assert all(item in graph_input_params for item in dict(model.named_parameters())), \
"Graph parameter names does not match model parameters."
def test_modifying_params(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.param = torch.nn.Parameter(torch.tensor([2.0]))
def forward(self, x):
y = x * x
self.param.data.add_(1.0)
return y
x = torch.tensor([1, 2])
verify(MyModel(), x, backend, do_constant_folding=False)
def test_fuse_conv_bn(self):
class Fuse(torch.nn.Module):
def __init__(self):
super(Fuse, self).__init__()
self.conv = torch.nn.Conv2d(3, 2, kernel_size=1, stride=2, padding=3, bias=True)
self.bn = torch.nn.BatchNorm2d(2)
def forward(self, x):
out = self.conv(x)
return self.bn(out)
x = torch.randn(2, 3, 2, 2, requires_grad=True)
graph, _, __ = self._model_to_graph(Fuse(), (x, ),
training=TrainingMode.EVAL, input_names=['x'],
dynamic_axes={'x': [0, 1, 2, 3]})
for node in graph.nodes():
assert node.kind() != "onnx::BatchNormalization"
assert node.kind() == "onnx::Conv"
assert len(list(graph.nodes())) == 1
def test_fuse_resnet18(self):
model = torchvision.models.resnet18(pretrained=True)
x = torch.randn(2, 3, 224, 224, requires_grad=True)
graph, _, __ = self._model_to_graph(model, (x, ),
input_names=['x'], dynamic_axes={'x': [0, 1, 2, 3]})
for node in graph.nodes():
assert node.kind() != "onnx::BatchNormalization"
def test_onnx_function_substitution_pass(self):
@torch.jit.script
def f(x : torch.Tensor, y : torch.Tensor):
z = x - y
return x + z
class MyModule(torch.nn.Module):
def __init__(self):
super(MyModule, self).__init__()
def forward(self, x, y):
return f(x, y)
model = MyModule()
input_1 = torch.tensor(11)
input_2 = torch.tensor(12)
_set_opset_version(self.opset_version)
_set_operator_export_type(OperatorExportTypes.ONNX)
graph, _, __ = self._model_to_graph(MyModule(), (input_1, input_2), do_constant_folding=True,
operator_export_type=OperatorExportTypes.ONNX,
input_names=['input_1', 'input_2'],
dynamic_axes={'input_1': [0], 'input_2': [0]})
# Check that the prim::Constant node in the graph for representing the
# scripted function `f` is removed and the following prim::CallFunction
# is replced by inline graph, with onnx::Sub and onnx::Add nodes.
for node in graph.nodes():
assert node.kind() != "prim::Constant"
assert len(list(graph.nodes())) == 2 # onnx::Sub and onnx::Add nodes only.
# opset 10 tests
TestUtilityFuns_opset10 = type(str("TestUtilityFuns_opset10"),
(TestCase,),
dict(TestUtilityFuns.__dict__, opset_version=10))
# opset 11 tests
TestUtilityFuns_opset11 = type(str("TestUtilityFuns_opset11"),
(TestCase,),
dict(TestUtilityFuns.__dict__, opset_version=11))
# opset 12 tests
TestUtilityFuns_opset12 = type(str("TestUtilityFuns_opset12"),
(TestCase,),
dict(TestUtilityFuns.__dict__, opset_version=12))
# opset 13 tests
TestUtilityFuns_opset13 = type(str("TestUtilityFuns_opset13"),
(TestCase,),
dict(TestUtilityFuns.__dict__, opset_version=13))
# opset 11 tests
TestUtilityFuns_opset11_new_jit_API = type(str("TestUtilityFuns_opset11_new_jit_API"),
(TestCase,),
dict(TestUtilityFuns.__dict__, opset_version=11))
# opset 12 tests
TestUtilityFuns_opset12_new_jit_API = type(str("TestUtilityFuns_opset12_new_jit_API"),
(TestCase,),
dict(TestUtilityFuns.__dict__, opset_version=12))
# opset 13 tests
TestUtilityFuns_opset13_new_jit_API = type(str("TestUtilityFuns_opset13_new_jit_API"),
(TestCase,),
dict(TestUtilityFuns.__dict__, opset_version=13))
if __name__ == "__main__":
run_tests()