blob: 948890f87f5c6e32ed61e72978a8621223f2c20e [file] [log] [blame]
# Owner(s): ["module: tests"]
import collections
import doctest
import functools
import itertools
import math
import os
import re
import unittest.mock
from typing import Any, Callable, Iterator, List, Tuple
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import \
(IS_FBCODE, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest,
parametrize, subtest, instantiate_parametrized_tests, dtype_name)
from torch.testing._internal.common_device_type import \
(PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes,
get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes,
deviceCountAtLeast, ops, expectedFailureMeta)
from torch.testing._internal.common_methods_invocations import op_db
import torch.testing._internal.opinfo_helper as opinfo_helper
from torch.testing._internal.common_dtype import get_all_dtypes
from torch.testing._internal.common_modules import modules, module_db
# For testing TestCase methods and torch.testing functions
class TestTesting(TestCase):
# Ensure that assertEqual handles numpy arrays properly
@dtypes(*(get_all_dtypes(include_half=True, include_bfloat16=False,
include_bool=True, include_complex=True)))
def test_assertEqual_numpy(self, device, dtype):
S = 10
test_sizes = [
(),
(0,),
(S,),
(S, S),
(0, S),
(S, 0)]
for test_size in test_sizes:
a = make_tensor(test_size, dtype=dtype, device=device, low=-5, high=5)
a_n = a.cpu().numpy()
msg = f'size: {test_size}'
self.assertEqual(a_n, a, rtol=0, atol=0, msg=msg)
self.assertEqual(a, a_n, rtol=0, atol=0, msg=msg)
self.assertEqual(a_n, a_n, rtol=0, atol=0, msg=msg)
def _isclose_helper(self, tests, device, dtype, equal_nan, atol=1e-08, rtol=1e-05):
for test in tests:
a = torch.tensor((test[0],), device=device, dtype=dtype)
b = torch.tensor((test[1],), device=device, dtype=dtype)
actual = torch.isclose(a, b, equal_nan=equal_nan, atol=atol, rtol=rtol)
expected = test[2]
self.assertEqual(actual.item(), expected)
def test_isclose_bool(self, device):
tests = (
(True, True, True),
(False, False, True),
(True, False, False),
(False, True, False),
)
self._isclose_helper(tests, device, torch.bool, False)
@dtypes(torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64)
def test_isclose_integer(self, device, dtype):
tests = (
(0, 0, True),
(0, 1, False),
(1, 0, False),
)
self._isclose_helper(tests, device, dtype, False)
# atol and rtol tests
tests = [
(0, 1, True),
(1, 0, False),
(1, 3, True),
]
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
if dtype is torch.uint8:
tests = [
(-1, 1, False),
(1, -1, False)
]
else:
tests = [
(-1, 1, True),
(1, -1, True)
]
self._isclose_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
@onlyNativeDeviceTypes
@dtypes(torch.float16, torch.float32, torch.float64)
def test_isclose_float(self, device, dtype):
tests = (
(0, 0, True),
(0, -1, False),
(float('inf'), float('inf'), True),
(-float('inf'), float('inf'), False),
(float('inf'), float('nan'), False),
(float('nan'), float('nan'), False),
(0, float('nan'), False),
(1, 1, True),
)
self._isclose_helper(tests, device, dtype, False)
# atol and rtol tests
eps = 1e-2 if dtype is torch.half else 1e-6
tests = (
(0, 1, True),
(0, 1 + eps, False),
(1, 0, False),
(1, 3, True),
(1 - eps, 3, False),
(-.25, .5, True),
(-.25 - eps, .5, False),
(.25, -.5, True),
(.25 + eps, -.5, False),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# equal_nan = True tests
tests = (
(0, float('nan'), False),
(float('inf'), float('nan'), False),
(float('nan'), float('nan'), True),
)
self._isclose_helper(tests, device, dtype, True)
@unittest.skipIf(IS_SANDCASTLE, "Skipping because doesn't work on sandcastle")
@dtypes(torch.complex64, torch.complex128)
def test_isclose_complex(self, device, dtype):
tests = (
(complex(1, 1), complex(1, 1 + 1e-8), True),
(complex(0, 1), complex(1, 1), False),
(complex(1, 1), complex(1, 0), False),
(complex(1, 1), complex(1, float('nan')), False),
(complex(1, float('nan')), complex(1, float('nan')), False),
(complex(1, 1), complex(1, float('inf')), False),
(complex(float('inf'), 1), complex(1, float('inf')), False),
(complex(-float('inf'), 1), complex(1, float('inf')), False),
(complex(-float('inf'), 1), complex(float('inf'), 1), False),
(complex(float('inf'), 1), complex(float('inf'), 1), True),
(complex(float('inf'), 1), complex(float('inf'), 1 + 1e-4), False),
)
self._isclose_helper(tests, device, dtype, False)
# atol and rtol tests
# atol and rtol tests
eps = 1e-6
tests = (
# Complex versions of float tests (real part)
(complex(0, 0), complex(1, 0), True),
(complex(0, 0), complex(1 + eps, 0), False),
(complex(1, 0), complex(0, 0), False),
(complex(1, 0), complex(3, 0), True),
(complex(1 - eps, 0), complex(3, 0), False),
(complex(-.25, 0), complex(.5, 0), True),
(complex(-.25 - eps, 0), complex(.5, 0), False),
(complex(.25, 0), complex(-.5, 0), True),
(complex(.25 + eps, 0), complex(-.5, 0), False),
# Complex versions of float tests (imaginary part)
(complex(0, 0), complex(0, 1), True),
(complex(0, 0), complex(0, 1 + eps), False),
(complex(0, 1), complex(0, 0), False),
(complex(0, 1), complex(0, 3), True),
(complex(0, 1 - eps), complex(0, 3), False),
(complex(0, -.25), complex(0, .5), True),
(complex(0, -.25 - eps), complex(0, .5), False),
(complex(0, .25), complex(0, -.5), True),
(complex(0, .25 + eps), complex(0, -.5), False),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# atol and rtol tests for isclose
tests = (
# Complex-specific tests
(complex(1, -1), complex(-1, 1), False),
(complex(1, -1), complex(2, -2), True),
(complex(-math.sqrt(2), math.sqrt(2)),
complex(-math.sqrt(.5), math.sqrt(.5)), True),
(complex(-math.sqrt(2), math.sqrt(2)),
complex(-math.sqrt(.501), math.sqrt(.499)), False),
(complex(2, 4), complex(1., 8.8523607), True),
(complex(2, 4), complex(1., 8.8523607 + eps), False),
(complex(1, 99), complex(4, 100), True),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# equal_nan = True tests
tests = (
(complex(1, 1), complex(1, float('nan')), False),
(complex(1, 1), complex(float('nan'), 1), False),
(complex(float('nan'), 1), complex(float('nan'), 1), True),
(complex(float('nan'), 1), complex(1, float('nan')), True),
(complex(float('nan'), float('nan')), complex(float('nan'), float('nan')), True),
)
self._isclose_helper(tests, device, dtype, True)
# Tests that isclose with rtol or atol values less than zero throws a
# RuntimeError
@dtypes(torch.bool, torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64,
torch.float16, torch.float32, torch.float64)
def test_isclose_atol_rtol_greater_than_zero(self, device, dtype):
t = torch.tensor((1,), device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=-1, rtol=1)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=1, rtol=-1)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=-1, rtol=-1)
def test_isclose_equality_shortcut(self):
# For values >= 2**53, integers differing by 1 can no longer differentiated by torch.float64 or lower precision
# floating point dtypes. Thus, even with rtol == 0 and atol == 0, these tensors would be considered close if
# they were not compared as integers.
a = torch.tensor(2 ** 53, dtype=torch.int64)
b = a + 1
self.assertFalse(torch.isclose(a, b, rtol=0, atol=0))
@dtypes(torch.float16, torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_isclose_nan_equality_shortcut(self, device, dtype):
if dtype.is_floating_point:
a = b = torch.nan
else:
a = complex(torch.nan, 0)
b = complex(0, torch.nan)
expected = True
tests = [(a, b, expected)]
self._isclose_helper(tests, device, dtype, equal_nan=True, rtol=0, atol=0)
@dtypes(torch.bool, torch.long, torch.float, torch.cfloat)
def test_make_tensor(self, device, dtype):
def check(size, low, high, requires_grad, noncontiguous):
if dtype not in [torch.float, torch.cfloat]:
requires_grad = False
t = make_tensor(size, dtype=dtype, device=device, low=low, high=high,
requires_grad=requires_grad, noncontiguous=noncontiguous)
self.assertEqual(t.shape, size)
self.assertEqual(t.device, torch.device(device))
self.assertEqual(t.dtype, dtype)
low = -9 if low is None else low
high = 9 if high is None else high
if t.numel() > 0 and dtype in [torch.long, torch.float]:
self.assertTrue(t.le(high).logical_and(t.ge(low)).all().item())
self.assertEqual(t.requires_grad, requires_grad)
if t.numel() > 1:
self.assertEqual(t.is_contiguous(), not noncontiguous)
else:
self.assertTrue(t.is_contiguous())
for size in (tuple(), (0,), (1,), (1, 1), (2,), (2, 3), (8, 16, 32)):
check(size, None, None, False, False)
check(size, 2, 4, True, True)
# The following tests (test_cuda_assert_*) are added to ensure test suite terminates early
# when CUDA assert was thrown. Because all subsequent test will fail if that happens.
# These tests are slow because it spawn another process to run test suite.
# See: https://github.com/pytorch/pytorch/issues/49019
@onlyCUDA
@slowTest
def test_cuda_assert_should_stop_common_utils_test_suite(self, device):
# test to ensure common_utils.py override has early termination for CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
class TestThatContainsCUDAAssertFailure(TestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self):
x = torch.rand(10, device='cuda')
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self):
x1 = torch.tensor([0., 1.], device='cuda')
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
if __name__ == '__main__':
run_tests()
""")
# should capture CUDA error
self.assertIn('CUDA error: device-side assert triggered', stderr)
# should run only 1 test because it throws unrecoverable error.
self.assertIn('errors=1', stderr)
@onlyCUDA
@slowTest
def test_cuda_assert_should_stop_common_device_type_test_suite(self, device):
# test to ensure common_device_type.py override has early termination for CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
class TestThatContainsCUDAAssertFailure(TestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self, device):
x = torch.rand(10, device=device)
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestThatContainsCUDAAssertFailure,
globals(),
only_for='cuda'
)
if __name__ == '__main__':
run_tests()
""")
# should capture CUDA error
self.assertIn('CUDA error: device-side assert triggered', stderr)
# should run only 1 test because it throws unrecoverable error.
self.assertIn('errors=1', stderr)
@onlyCUDA
@slowTest
def test_cuda_assert_should_not_stop_common_distributed_test_suite(self, device):
# test to ensure common_distributed.py override should not early terminate CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (run_tests, slowTest)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_distributed import MultiProcessTestCase
class TestThatContainsCUDAAssertFailure(MultiProcessTestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self, device):
x = torch.rand(10, device=device)
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestThatContainsCUDAAssertFailure,
globals(),
only_for='cuda'
)
if __name__ == '__main__':
run_tests()
""")
# we are currently disabling CUDA early termination for distributed tests.
self.assertIn('errors=2', stderr)
@expectedFailureMeta # This is only supported for CPU and CUDA
@onlyNativeDeviceTypes
def test_get_supported_dtypes(self, device):
# Test the `get_supported_dtypes` helper function.
# We acquire the dtypes for few Ops dynamically and verify them against
# the correct statically described values.
ops_to_test = list(filter(lambda op: op.name in ['atan2', 'topk', 'xlogy'], op_db))
for op in ops_to_test:
dynamic_dtypes = opinfo_helper.get_supported_dtypes(op.op, op.sample_inputs_func, self.device_type)
dynamic_dispatch = opinfo_helper.dtypes_dispatch_hint(dynamic_dtypes)
if self.device_type == 'cpu':
dtypes = op.dtypesIfCPU
else: # device_type ='cuda'
dtypes = op.dtypesIfCUDA
self.assertTrue(set(dtypes) == set(dynamic_dtypes))
self.assertTrue(set(dtypes) == set(dynamic_dispatch.dispatch_fn()))
instantiate_device_type_tests(TestTesting, globals())
class TestFrameworkUtils(TestCase):
@skipIfRocm
@unittest.skipIf(IS_WINDOWS, "Skipping because doesn't work for windows")
@unittest.skipIf(IS_SANDCASTLE, "Skipping because doesn't work on sandcastle")
def test_filtering_env_var(self):
# Test environment variable selected device type test generator.
test_filter_file_template = """\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
class TestEnvironmentVariable(TestCase):
def test_trivial_passing_test(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestEnvironmentVariable,
globals(),
)
if __name__ == '__main__':
run_tests()
"""
test_bases_count = len(get_device_type_test_bases())
# Test without setting env var should run everything.
env = dict(os.environ)
for k in ['IN_CI', PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY]:
if k in env.keys():
del env[k]
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertIn(f'Ran {test_bases_count} test', stderr.decode('ascii'))
# Test with setting only_for should only run 1 test.
env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY] = 'cpu'
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertIn('Ran 1 test', stderr.decode('ascii'))
# Test with setting except_for should run 1 less device type from default.
del env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY]
env[PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY] = 'cpu'
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertIn(f'Ran {test_bases_count-1} test', stderr.decode('ascii'))
# Test with setting both should throw exception
env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY] = 'cpu'
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertNotIn('OK', stderr.decode('ascii'))
def make_assert_close_inputs(actual: Any, expected: Any) -> List[Tuple[Any, Any]]:
"""Makes inputs for :func:`torch.testing.assert_close` functions based on two examples.
Args:
actual (Any): Actual input.
expected (Any): Expected input.
Returns:
List[Tuple[Any, Any]]: Pair of example inputs, as well as the example inputs wrapped in sequences
(:class:`tuple`, :class:`list`), and mappings (:class:`dict`, :class:`~collections.OrderedDict`).
"""
return [
(actual, expected),
# tuple vs. tuple
((actual,), (expected,)),
# list vs. list
([actual], [expected]),
# tuple vs. list
((actual,), [expected]),
# dict vs. dict
({"t": actual}, {"t": expected}),
# OrderedDict vs. OrderedDict
(collections.OrderedDict([("t", actual)]), collections.OrderedDict([("t", expected)])),
# dict vs. OrderedDict
({"t": actual}, collections.OrderedDict([("t", expected)])),
# list of tuples vs. tuple of lists
([(actual,)], ([expected],)),
# list of dicts vs. tuple of OrderedDicts
([{"t": actual}], (collections.OrderedDict([("t", expected)]),)),
# dict of lists vs. OrderedDict of tuples
({"t": [actual]}, collections.OrderedDict([("t", (expected,))])),
]
def assert_close_with_inputs(actual: Any, expected: Any) -> Iterator[Callable]:
"""Yields :func:`torch.testing.assert_close` with predefined positional inputs based on two examples.
.. note::
Every test that does not test for a specific input should iterate over this to maximize the coverage.
Args:
actual (Any): Actual input.
expected (Any): Expected input.
Yields:
Callable: :func:`torch.testing.assert_close` with predefined positional inputs.
"""
for inputs in make_assert_close_inputs(actual, expected):
yield functools.partial(torch.testing.assert_close, *inputs)
class TestAssertClose(TestCase):
def test_mismatching_types_subclasses(self):
actual = torch.rand(())
expected = torch.nn.Parameter(actual)
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_mismatching_types_type_equality(self):
actual = torch.empty(())
expected = torch.nn.Parameter(actual)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(TypeError, str(type(expected))):
fn(allow_subclasses=False)
def test_mismatching_types(self):
actual = torch.empty(2)
expected = actual.numpy()
for fn, allow_subclasses in itertools.product(assert_close_with_inputs(actual, expected), (True, False)):
with self.assertRaisesRegex(TypeError, str(type(expected))):
fn(allow_subclasses=allow_subclasses)
def test_unknown_type(self):
actual = "0"
expected = "0"
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(TypeError, str(type(actual))):
fn()
def test_mismatching_shape(self):
actual = torch.empty(())
expected = actual.clone().reshape((1,))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "shape"):
fn()
@unittest.skipIf(not torch.backends.mkldnn.is_available(), reason="MKLDNN is not available.")
def test_unknown_layout(self):
actual = torch.empty((2, 2))
expected = actual.to_mkldnn()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(ValueError, "layout"):
fn()
def test_meta(self):
actual = torch.empty((2, 2), device="meta")
expected = torch.empty((2, 2), device="meta")
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_mismatching_layout(self):
strided = torch.empty((2, 2))
sparse_coo = strided.to_sparse()
sparse_csr = strided.to_sparse_csr()
for actual, expected in itertools.combinations((strided, sparse_coo, sparse_csr), 2):
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "layout"):
fn()
def test_mismatching_layout_no_check(self):
strided = torch.randn((2, 2))
sparse_coo = strided.to_sparse()
sparse_csr = strided.to_sparse_csr()
for actual, expected in itertools.combinations((strided, sparse_coo, sparse_csr), 2):
for fn in assert_close_with_inputs(actual, expected):
fn(check_layout=False)
def test_mismatching_dtype(self):
actual = torch.empty((), dtype=torch.float)
expected = actual.clone().to(torch.int)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "dtype"):
fn()
def test_mismatching_dtype_no_check(self):
actual = torch.ones((), dtype=torch.float)
expected = actual.clone().to(torch.int)
for fn in assert_close_with_inputs(actual, expected):
fn(check_dtype=False)
def test_mismatching_stride(self):
actual = torch.empty((2, 2))
expected = torch.as_strided(actual.clone().t().contiguous(), actual.shape, actual.stride()[::-1])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "stride"):
fn(check_stride=True)
def test_mismatching_stride_no_check(self):
actual = torch.rand((2, 2))
expected = torch.as_strided(actual.clone().t().contiguous(), actual.shape, actual.stride()[::-1])
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_only_rtol(self):
actual = torch.empty(())
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(ValueError):
fn(rtol=0.0)
def test_only_atol(self):
actual = torch.empty(())
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(ValueError):
fn(atol=0.0)
def test_mismatching_values(self):
actual = torch.tensor(1)
expected = torch.tensor(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn()
def test_mismatching_values_rtol(self):
eps = 1e-3
actual = torch.tensor(1.0)
expected = torch.tensor(1.0 + eps)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn(rtol=eps / 2, atol=0.0)
def test_mismatching_values_atol(self):
eps = 1e-3
actual = torch.tensor(0.0)
expected = torch.tensor(eps)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn(rtol=0.0, atol=eps / 2)
def test_matching(self):
actual = torch.tensor(1.0)
expected = actual.clone()
torch.testing.assert_close(actual, expected)
def test_matching_rtol(self):
eps = 1e-3
actual = torch.tensor(1.0)
expected = torch.tensor(1.0 + eps)
for fn in assert_close_with_inputs(actual, expected):
fn(rtol=eps * 2, atol=0.0)
def test_matching_atol(self):
eps = 1e-3
actual = torch.tensor(0.0)
expected = torch.tensor(eps)
for fn in assert_close_with_inputs(actual, expected):
fn(rtol=0.0, atol=eps * 2)
# TODO: the code that this test was designed for was removed in https://github.com/pytorch/pytorch/pull/56058
# We need to check if this test is still needed or if this behavior is now enabled by default.
def test_matching_conjugate_bit(self):
actual = torch.tensor(complex(1, 1)).conj()
expected = torch.tensor(complex(1, -1))
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_matching_nan(self):
nan = float("NaN")
tests = (
(nan, nan),
(complex(nan, 0), complex(0, nan)),
(complex(nan, nan), complex(nan, 0)),
(complex(nan, nan), complex(nan, nan)),
)
for actual, expected in tests:
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn()
def test_matching_nan_with_equal_nan(self):
nan = float("NaN")
tests = (
(nan, nan),
(complex(nan, 0), complex(0, nan)),
(complex(nan, nan), complex(nan, 0)),
(complex(nan, nan), complex(nan, nan)),
)
for actual, expected in tests:
for fn in assert_close_with_inputs(actual, expected):
fn(equal_nan=True)
def test_numpy(self):
tensor = torch.rand(2, 2, dtype=torch.float32)
actual = tensor.numpy()
expected = actual.copy()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_scalar(self):
number = torch.randint(10, size=()).item()
for actual, expected in itertools.product((int(number), float(number), complex(number)), repeat=2):
check_dtype = type(actual) is type(expected)
for fn in assert_close_with_inputs(actual, expected):
fn(check_dtype=check_dtype)
def test_bool(self):
actual = torch.tensor([True, False])
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_none(self):
actual = expected = None
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_none_mismatch(self):
expected = None
for actual in (False, 0, torch.nan, torch.tensor(torch.nan)):
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn()
def test_docstring_examples(self):
finder = doctest.DocTestFinder(verbose=False)
runner = doctest.DocTestRunner(verbose=False, optionflags=doctest.NORMALIZE_WHITESPACE)
globs = dict(torch=torch)
doctests = finder.find(torch.testing.assert_close, globs=globs)[0]
failures = []
runner.run(doctests, out=lambda report: failures.append(report))
if failures:
raise AssertionError(f"Doctest found {len(failures)} failures:\n\n" + "\n".join(failures))
def test_default_tolerance_selection_mismatching_dtypes(self):
# If the default tolerances where selected based on the promoted dtype, i.e. float64,
# these tensors wouldn't be considered close.
actual = torch.tensor(0.99, dtype=torch.bfloat16)
expected = torch.tensor(1.0, dtype=torch.float64)
for fn in assert_close_with_inputs(actual, expected):
fn(check_dtype=False)
class UnexpectedException(Exception):
"""The only purpose of this exception is to test ``assert_close``'s handling of unexpected exceptions. Thus,
the test should mock a component to raise this instead of the regular behavior. We avoid using a builtin
exception here to avoid triggering possible handling of them.
"""
pass
@unittest.mock.patch("torch.testing._comparison.TensorLikePair.__init__", side_effect=UnexpectedException)
def test_unexpected_error_originate(self, _):
actual = torch.tensor(1.0)
expected = actual.clone()
with self.assertRaisesRegex(RuntimeError, "unexpected exception"):
torch.testing.assert_close(actual, expected)
@unittest.mock.patch("torch.testing._comparison.TensorLikePair.compare", side_effect=UnexpectedException)
def test_unexpected_error_compare(self, _):
actual = torch.tensor(1.0)
expected = actual.clone()
with self.assertRaisesRegex(RuntimeError, "unexpected exception"):
torch.testing.assert_close(actual, expected)
class TestAssertCloseMultiDevice(TestCase):
@deviceCountAtLeast(1)
def test_mismatching_device(self, devices):
for actual_device, expected_device in itertools.permutations(("cpu", *devices), 2):
actual = torch.empty((), device=actual_device)
expected = actual.clone().to(expected_device)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "device"):
fn()
@deviceCountAtLeast(1)
def test_mismatching_device_no_check(self, devices):
for actual_device, expected_device in itertools.permutations(("cpu", *devices), 2):
actual = torch.rand((), device=actual_device)
expected = actual.clone().to(expected_device)
for fn in assert_close_with_inputs(actual, expected):
fn(check_device=False)
instantiate_device_type_tests(TestAssertCloseMultiDevice, globals(), only_for="cuda")
class TestAssertCloseErrorMessage(TestCase):
def test_identifier_tensor_likes(self):
actual = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 2, 5, 6])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Tensor-likes")):
fn()
def test_identifier_scalars(self):
actual = 3
expected = 5
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Scalars")):
fn()
def test_not_equal(self):
actual = torch.tensor([1, 2, 3, 4], dtype=torch.float32)
expected = torch.tensor([1, 2, 5, 6], dtype=torch.float32)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("not equal")):
fn(rtol=0.0, atol=0.0)
def test_not_close(self):
actual = torch.tensor([1, 2, 3, 4], dtype=torch.float32)
expected = torch.tensor([1, 2, 5, 6], dtype=torch.float32)
for fn, (rtol, atol) in itertools.product(
assert_close_with_inputs(actual, expected), ((1.3e-6, 0.0), (0.0, 1e-5), (1.3e-6, 1e-5))
):
with self.assertRaisesRegex(AssertionError, re.escape("not close")):
fn(rtol=rtol, atol=atol)
def test_mismatched_elements(self):
actual = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 2, 5, 6])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Mismatched elements: 2 / 4 (50.0%)")):
fn()
def test_abs_diff(self):
actual = torch.tensor([[1, 2], [3, 4]])
expected = torch.tensor([[1, 2], [5, 4]])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Greatest absolute difference: 2 at index (1, 0)")):
fn()
def test_abs_diff_scalar(self):
actual = 3
expected = 5
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Absolute difference: 2")):
fn()
def test_rel_diff(self):
actual = torch.tensor([[1, 2], [3, 4]])
expected = torch.tensor([[1, 4], [3, 4]])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Greatest relative difference: 0.5 at index (0, 1)")):
fn()
def test_rel_diff_scalar(self):
actual = 2
expected = 4
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Relative difference: 0.5")):
fn()
def test_zero_div_zero(self):
actual = torch.tensor([1.0, 0.0])
expected = torch.tensor([2.0, 0.0])
for fn in assert_close_with_inputs(actual, expected):
# Although it looks complicated, this regex just makes sure that the word 'nan' is not part of the error
# message. That would happen if the 0 / 0 is used for the mismatch computation although it matches.
with self.assertRaisesRegex(AssertionError, "((?!nan).)*"):
fn()
def test_rtol(self):
rtol = 1e-3
actual = torch.tensor((1, 2))
expected = torch.tensor((2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape(f"(up to {rtol} allowed)")):
fn(rtol=rtol, atol=0.0)
def test_atol(self):
atol = 1e-3
actual = torch.tensor((1, 2))
expected = torch.tensor((2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape(f"(up to {atol} allowed)")):
fn(rtol=0.0, atol=atol)
def test_msg(self):
msg = "Custom error message!"
actual = torch.tensor(1)
expected = torch.tensor(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, msg):
fn(msg=msg)
class TestAssertCloseContainer(TestCase):
def test_sequence_mismatching_len(self):
actual = (torch.empty(()),)
expected = ()
with self.assertRaises(AssertionError):
torch.testing.assert_close(actual, expected)
def test_sequence_mismatching_values_msg(self):
t1 = torch.tensor(1)
t2 = torch.tensor(2)
actual = (t1, t1)
expected = (t1, t2)
with self.assertRaisesRegex(AssertionError, re.escape("item [1]")):
torch.testing.assert_close(actual, expected)
def test_mapping_mismatching_keys(self):
actual = {"a": torch.empty(())}
expected = {}
with self.assertRaises(AssertionError):
torch.testing.assert_close(actual, expected)
def test_mapping_mismatching_values_msg(self):
t1 = torch.tensor(1)
t2 = torch.tensor(2)
actual = {"a": t1, "b": t1}
expected = {"a": t1, "b": t2}
with self.assertRaisesRegex(AssertionError, re.escape("item ['b']")):
torch.testing.assert_close(actual, expected)
class TestAssertCloseSparseCOO(TestCase):
def test_matching_coalesced(self):
indices = (
(0, 1),
(1, 0),
)
values = (1, 2)
actual = torch.sparse_coo_tensor(indices, values, size=(2, 2)).coalesce()
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_matching_uncoalesced(self):
indices = (
(0, 1),
(1, 0),
)
values = (1, 2)
actual = torch.sparse_coo_tensor(indices, values, size=(2, 2))
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_mismatching_sparse_dims(self):
t = torch.randn(2, 3, 4)
actual = t.to_sparse()
expected = t.to_sparse(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("number of sparse dimensions in sparse COO tensors")):
fn()
def test_mismatching_nnz(self):
actual_indices = (
(0, 1),
(1, 0),
)
actual_values = (1, 2)
actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2))
expected_indices = (
(0, 1, 1,),
(1, 0, 0,),
)
expected_values = (1, 1, 1)
expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("number of specified values in sparse COO tensors")):
fn()
def test_mismatching_indices_msg(self):
actual_indices = (
(0, 1),
(1, 0),
)
actual_values = (1, 2)
actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2))
expected_indices = (
(0, 1),
(1, 1),
)
expected_values = (1, 2)
expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Sparse COO indices")):
fn()
def test_mismatching_values_msg(self):
actual_indices = (
(0, 1),
(1, 0),
)
actual_values = (1, 2)
actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2))
expected_indices = (
(0, 1),
(1, 0),
)
expected_values = (1, 3)
expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Sparse COO values")):
fn()
@unittest.skipIf(IS_FBCODE or IS_SANDCASTLE, "Not all sandcastle jobs support CSR testing")
class TestAssertCloseSparseCSR(TestCase):
def test_matching(self):
crow_indices = (0, 1, 2)
col_indices = (1, 0)
values = (1, 2)
actual = torch.sparse_csr_tensor(crow_indices, col_indices, values, size=(2, 2))
# TODO: replace this by actual.clone() after https://github.com/pytorch/pytorch/issues/59285 is fixed
expected = torch.sparse_csr_tensor(
actual.crow_indices(), actual.col_indices(), actual.values(), size=actual.size(), device=actual.device
)
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_mismatching_crow_indices_msg(self):
actual_crow_indices = (0, 1, 2)
actual_col_indices = (1, 0)
actual_values = (1, 2)
actual = torch.sparse_csr_tensor(actual_crow_indices, actual_col_indices, actual_values, size=(2, 2))
expected_crow_indices = (0, 2, 2)
expected_col_indices = actual_col_indices
expected_values = actual_values
expected = torch.sparse_csr_tensor(expected_crow_indices, expected_col_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Sparse CSR crow_indices")):
fn()
def test_mismatching_col_indices_msg(self):
actual_crow_indices = (0, 1, 2)
actual_col_indices = (1, 0)
actual_values = (1, 2)
actual = torch.sparse_csr_tensor(actual_crow_indices, actual_col_indices, actual_values, size=(2, 2))
expected_crow_indices = actual_crow_indices
expected_col_indices = (1, 1)
expected_values = actual_values
expected = torch.sparse_csr_tensor(expected_crow_indices, expected_col_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Sparse CSR col_indices")):
fn()
def test_mismatching_values_msg(self):
actual_crow_indices = (0, 1, 2)
actual_col_indices = (1, 0)
actual_values = (1, 2)
actual = torch.sparse_csr_tensor(actual_crow_indices, actual_col_indices, actual_values, size=(2, 2))
expected_crow_indices = actual_crow_indices
expected_col_indices = actual_col_indices
expected_values = (1, 3)
expected = torch.sparse_csr_tensor(expected_crow_indices, expected_col_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Sparse CSR values")):
fn()
class TestAssertCloseQuantized(TestCase):
def test_mismatching_is_quantized(self):
actual = torch.tensor(1.0)
expected = torch.quantize_per_tensor(actual, scale=1.0, zero_point=0, dtype=torch.qint32)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "is_quantized"):
fn()
def test_mismatching_qscheme(self):
t = torch.tensor((1.0,))
actual = torch.quantize_per_tensor(t, scale=1.0, zero_point=0, dtype=torch.qint32)
expected = torch.quantize_per_channel(
t,
scales=torch.tensor((1.0,)),
zero_points=torch.tensor((0,)),
axis=0,
dtype=torch.qint32,
)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "qscheme"):
fn()
def test_matching_per_tensor(self):
actual = torch.quantize_per_tensor(torch.tensor(1.0), scale=1.0, zero_point=0, dtype=torch.qint32)
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_matching_per_channel(self):
actual = torch.quantize_per_channel(
torch.tensor((1.0,)),
scales=torch.tensor((1.0,)),
zero_points=torch.tensor((0,)),
axis=0,
dtype=torch.qint32,
)
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn()
def _get_test_names_for_test_class(test_cls):
""" Convenience function to get all test names for a given test class. """
test_names = ['{}.{}'.format(test_cls.__name__, key) for key in test_cls.__dict__
if key.startswith('test_')]
return sorted(test_names)
class TestTestParametrization(TestCase):
def test_default_names(self):
class TestParametrized(TestCase):
@parametrize("x", range(5))
def test_default_names(self, x):
pass
@parametrize("x,y", [(1, 2), (2, 3), (3, 4)])
def test_two_things_default_names(self, x, y):
pass
instantiate_parametrized_tests(TestParametrized)
expected_test_names = [
'TestParametrized.test_default_names_x_0',
'TestParametrized.test_default_names_x_1',
'TestParametrized.test_default_names_x_2',
'TestParametrized.test_default_names_x_3',
'TestParametrized.test_default_names_x_4',
'TestParametrized.test_two_things_default_names_x_1_y_2',
'TestParametrized.test_two_things_default_names_x_2_y_3',
'TestParametrized.test_two_things_default_names_x_3_y_4',
]
test_names = _get_test_names_for_test_class(TestParametrized)
self.assertEqual(expected_test_names, test_names)
def test_name_fn(self):
class TestParametrized(TestCase):
@parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias')
def test_custom_names(self, bias):
pass
@parametrize("x", [1, 2], name_fn=str)
@parametrize("y", [3, 4], name_fn=str)
@parametrize("z", [5, 6], name_fn=str)
def test_three_things_composition_custom_names(self, x, y, z):
pass
@parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: '{}__{}'.format(x, y))
def test_two_things_custom_names_alternate(self, x, y):
pass
instantiate_parametrized_tests(TestParametrized)
expected_test_names = [
'TestParametrized.test_custom_names_bias',
'TestParametrized.test_custom_names_no_bias',
'TestParametrized.test_three_things_composition_custom_names_1_3_5',
'TestParametrized.test_three_things_composition_custom_names_1_3_6',
'TestParametrized.test_three_things_composition_custom_names_1_4_5',
'TestParametrized.test_three_things_composition_custom_names_1_4_6',
'TestParametrized.test_three_things_composition_custom_names_2_3_5',
'TestParametrized.test_three_things_composition_custom_names_2_3_6',
'TestParametrized.test_three_things_composition_custom_names_2_4_5',
'TestParametrized.test_three_things_composition_custom_names_2_4_6',
'TestParametrized.test_two_things_custom_names_alternate_1__2',
'TestParametrized.test_two_things_custom_names_alternate_1__3',
'TestParametrized.test_two_things_custom_names_alternate_1__4',
]
test_names = _get_test_names_for_test_class(TestParametrized)
self.assertEqual(expected_test_names, test_names)
def test_subtest_names(self):
class TestParametrized(TestCase):
@parametrize("bias", [subtest(True, name='bias'),
subtest(False, name='no_bias')])
def test_custom_names(self, bias):
pass
@parametrize("x,y", [subtest((1, 2), name='double'),
subtest((1, 3), name='triple'),
subtest((1, 4), name='quadruple')])
def test_two_things_custom_names(self, x, y):
pass
instantiate_parametrized_tests(TestParametrized)
expected_test_names = [
'TestParametrized.test_custom_names_bias',
'TestParametrized.test_custom_names_no_bias',
'TestParametrized.test_two_things_custom_names_double',
'TestParametrized.test_two_things_custom_names_quadruple',
'TestParametrized.test_two_things_custom_names_triple',
]
test_names = _get_test_names_for_test_class(TestParametrized)
self.assertEqual(expected_test_names, test_names)
def test_modules_decorator_misuse_error(self):
# Test that @modules errors out when used with instantiate_parametrized_tests().
class TestParametrized(TestCase):
@modules(module_db)
def test_modules(self, module_info):
pass
with self.assertRaisesRegex(RuntimeError, 'intended to be used in a device-specific context'):
instantiate_parametrized_tests(TestParametrized)
def test_ops_decorator_misuse_error(self):
# Test that @modules errors out when used with instantiate_parametrized_tests().
class TestParametrized(TestCase):
@ops(op_db)
def test_ops(self, module_info):
pass
with self.assertRaisesRegex(RuntimeError, 'intended to be used in a device-specific context'):
instantiate_parametrized_tests(TestParametrized)
def test_multiple_handling_of_same_param_error(self):
# Test that multiple decorators handling the same param errors out.
class TestParametrized(TestCase):
@parametrize("x", range(3))
@parametrize("x", range(5))
def test_param(self, x):
pass
with self.assertRaisesRegex(RuntimeError, 'multiple parametrization decorators'):
instantiate_parametrized_tests(TestParametrized)
@parametrize("x", [1, subtest(2, decorators=[unittest.expectedFailure]), 3])
def test_subtest_expected_failure(self, x):
if x == 2:
raise RuntimeError('Boom')
@parametrize("x", [subtest(1, decorators=[unittest.expectedFailure]), 2, 3])
@parametrize("y", [4, 5, subtest(6, decorators=[unittest.expectedFailure])])
def test_two_things_subtest_expected_failure(self, x, y):
if x == 1 or y == 6:
raise RuntimeError('Boom')
class TestTestParametrizationDeviceType(TestCase):
def test_unparametrized_names(self, device):
# This test exists to protect against regressions in device / dtype test naming
# due to parametrization logic.
device = self.device_type
class TestParametrized(TestCase):
def test_device_specific(self, device):
pass
@dtypes(torch.float32, torch.float64)
def test_device_dtype_specific(self, device, dtype):
pass
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
device_cls = locals()['TestParametrized{}'.format(device.upper())]
expected_test_names = [name.format(device_cls.__name__, device) for name in (
'{}.test_device_dtype_specific_{}_float32',
'{}.test_device_dtype_specific_{}_float64',
'{}.test_device_specific_{}')
]
test_names = _get_test_names_for_test_class(device_cls)
self.assertEqual(expected_test_names, test_names)
def test_default_names(self, device):
device = self.device_type
class TestParametrized(TestCase):
@parametrize("x", range(5))
def test_default_names(self, device, x):
pass
@parametrize("x,y", [(1, 2), (2, 3), (3, 4)])
def test_two_things_default_names(self, device, x, y):
pass
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
device_cls = locals()['TestParametrized{}'.format(device.upper())]
expected_test_names = [name.format(device_cls.__name__, device) for name in (
'{}.test_default_names_x_0_{}',
'{}.test_default_names_x_1_{}',
'{}.test_default_names_x_2_{}',
'{}.test_default_names_x_3_{}',
'{}.test_default_names_x_4_{}',
'{}.test_two_things_default_names_x_1_y_2_{}',
'{}.test_two_things_default_names_x_2_y_3_{}',
'{}.test_two_things_default_names_x_3_y_4_{}')
]
test_names = _get_test_names_for_test_class(device_cls)
self.assertEqual(expected_test_names, test_names)
def test_name_fn(self, device):
device = self.device_type
class TestParametrized(TestCase):
@parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias')
def test_custom_names(self, device, bias):
pass
@parametrize("x", [1, 2], name_fn=str)
@parametrize("y", [3, 4], name_fn=str)
@parametrize("z", [5, 6], name_fn=str)
def test_three_things_composition_custom_names(self, device, x, y, z):
pass
@parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: '{}__{}'.format(x, y))
def test_two_things_custom_names_alternate(self, device, x, y):
pass
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
device_cls = locals()['TestParametrized{}'.format(device.upper())]
expected_test_names = [name.format(device_cls.__name__, device) for name in (
'{}.test_custom_names_bias_{}',
'{}.test_custom_names_no_bias_{}',
'{}.test_three_things_composition_custom_names_1_3_5_{}',
'{}.test_three_things_composition_custom_names_1_3_6_{}',
'{}.test_three_things_composition_custom_names_1_4_5_{}',
'{}.test_three_things_composition_custom_names_1_4_6_{}',
'{}.test_three_things_composition_custom_names_2_3_5_{}',
'{}.test_three_things_composition_custom_names_2_3_6_{}',
'{}.test_three_things_composition_custom_names_2_4_5_{}',
'{}.test_three_things_composition_custom_names_2_4_6_{}',
'{}.test_two_things_custom_names_alternate_1__2_{}',
'{}.test_two_things_custom_names_alternate_1__3_{}',
'{}.test_two_things_custom_names_alternate_1__4_{}')
]
test_names = _get_test_names_for_test_class(device_cls)
self.assertEqual(expected_test_names, test_names)
def test_subtest_names(self, device):
device = self.device_type
class TestParametrized(TestCase):
@parametrize("bias", [subtest(True, name='bias'),
subtest(False, name='no_bias')])
def test_custom_names(self, device, bias):
pass
@parametrize("x,y", [subtest((1, 2), name='double'),
subtest((1, 3), name='triple'),
subtest((1, 4), name='quadruple')])
def test_two_things_custom_names(self, device, x, y):
pass
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
device_cls = locals()['TestParametrized{}'.format(device.upper())]
expected_test_names = [name.format(device_cls.__name__, device) for name in (
'{}.test_custom_names_bias_{}',
'{}.test_custom_names_no_bias_{}',
'{}.test_two_things_custom_names_double_{}',
'{}.test_two_things_custom_names_quadruple_{}',
'{}.test_two_things_custom_names_triple_{}')
]
test_names = _get_test_names_for_test_class(device_cls)
self.assertEqual(expected_test_names, test_names)
def test_ops_composition_names(self, device):
device = self.device_type
class TestParametrized(TestCase):
@ops(op_db)
@parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled')
def test_op_parametrized(self, device, dtype, op, flag):
pass
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
device_cls = locals()['TestParametrized{}'.format(device.upper())]
expected_test_names = []
for op in op_db:
for dtype in op.default_test_dtypes(device):
for flag_part in ('flag_disabled', 'flag_enabled'):
expected_name = '{}.test_op_parametrized_{}_{}_{}_{}'.format(
device_cls.__name__, op.formatted_name, flag_part, device, dtype_name(dtype))
expected_test_names.append(expected_name)
test_names = _get_test_names_for_test_class(device_cls)
self.assertEqual(sorted(expected_test_names), sorted(test_names))
def test_dtypes_composition_valid(self, device):
# Test checks that @parametrize and @dtypes compose as expected when @parametrize
# doesn't set dtype.
device = self.device_type
class TestParametrized(TestCase):
@dtypes(torch.float32, torch.float64)
@parametrize("x", range(3))
def test_parametrized(self, x, dtype):
pass
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
device_cls = locals()['TestParametrized{}'.format(device.upper())]
expected_test_names = [name.format(device_cls.__name__, device) for name in (
'{}.test_parametrized_x_0_{}_float32',
'{}.test_parametrized_x_0_{}_float64',
'{}.test_parametrized_x_1_{}_float32',
'{}.test_parametrized_x_1_{}_float64',
'{}.test_parametrized_x_2_{}_float32',
'{}.test_parametrized_x_2_{}_float64')
]
test_names = _get_test_names_for_test_class(device_cls)
self.assertEqual(sorted(expected_test_names), sorted(test_names))
def test_dtypes_composition_invalid(self, device):
# Test checks that @dtypes cannot be composed with parametrization decorators when they
# also try to set dtype.
device = self.device_type
class TestParametrized(TestCase):
@dtypes(torch.float32, torch.float64)
@parametrize("dtype", [torch.int32, torch.int64])
def test_parametrized(self, dtype):
pass
with self.assertRaisesRegex(RuntimeError, "handled multiple times"):
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
# Verify proper error behavior with @ops + @dtypes, as both try to set dtype.
class TestParametrized(TestCase):
@dtypes(torch.float32, torch.float64)
@ops(op_db)
def test_parametrized(self, op, dtype):
pass
with self.assertRaisesRegex(RuntimeError, "handled multiple times"):
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
def test_multiple_handling_of_same_param_error(self, device):
# Test that multiple decorators handling the same param errors out.
# Both @modules and @ops handle the dtype param.
class TestParametrized(TestCase):
@ops(op_db)
@modules(module_db)
def test_param(self, device, dtype, op, module_info):
pass
with self.assertRaisesRegex(RuntimeError, "handled multiple times"):
instantiate_device_type_tests(TestParametrized, locals(), only_for=device)
@parametrize("x", [1, subtest(2, decorators=[unittest.expectedFailure]), 3])
def test_subtest_expected_failure(self, device, x):
if x == 2:
raise RuntimeError('Boom')
@parametrize("x", [subtest(1, decorators=[unittest.expectedFailure]), 2, 3])
@parametrize("y", [4, 5, subtest(6, decorators=[unittest.expectedFailure])])
def test_two_things_subtest_expected_failure(self, device, x, y):
if x == 1 or y == 6:
raise RuntimeError('Boom')
instantiate_parametrized_tests(TestTestParametrization)
instantiate_device_type_tests(TestTestParametrizationDeviceType, globals())
if __name__ == '__main__':
run_tests()