blob: 28476ff259576fa8dd9c0487e242aa335c64df0e [file] [log] [blame]
# Owner(s): ["module: codegen"]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs, log_input
def are_aliased(x, y):
if x._base is None and y._base is None:
return False
if x._base is not None and y._base is None:
return x._base is y
if x._base is None and y._base is not None:
return y._base is x
return x._base is y._base
class TestFunctionalization(TestCase):
def get_logs(self, func, inpt):
input_clone_logging = LoggingTensor(inpt.clone())
input_functional_logging = torch._to_functional_tensor(input_clone_logging)
with capture_logs() as logs:
log_input("input", input_clone_logging)
torch._enable_functionalization()
try:
func(input_functional_logging)
finally:
torch._disable_functionalization()
return logs
def assert_functionalization(self, func, inpt):
input_clone = inpt.clone()
input_clone2 = inpt.clone()
input_functional = torch._to_functional_tensor(input_clone2)
# Compare outputs (and mutated inputs), with and without functionalization.
out_ref = func(inpt)
torch._enable_functionalization()
try:
out_functional = func(input_functional)
finally:
torch._disable_functionalization()
# We need to sync the input tensors first, in case there are any queued mutations left.
torch._sync(input_functional)
torch._sync(out_functional)
self.assertEqual(out_ref, torch._from_functional_tensor(out_functional))
self.assertEqual(inpt, torch._from_functional_tensor(input_functional)) # input mutations should still occur
def test_simple(self):
def f(x):
# simple test: 1 view op, 1 inplace op
tmp = torch.ones(4, 2)
y = x.view(4, 2)
y.add_(tmp)
z = x * x
return y
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.view($0, [4, 2])
$2 = torch._ops.aten.add($1, tensor([[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]))
$3 = torch._ops.aten.view($2, [4, 2])
$4 = torch._ops.aten.mul($3, $3)""")
def test_inplace_on_non_view(self):
def f(x):
# test for the case where we functionalize an inplace op on the other tensor - not a view.
# This is worth checking because the tensor will have an empty ViewMeta stack, which needs to be special cased.
tmp = torch.ones(4, 2)
y = x.view(4, 2)
x.add_(tmp)
return y
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.view($0, [4, 2])
$2 = torch._ops.aten.add($0, tensor([[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]))""")
def test_tensor_list_composite(self):
def f(x):
# Test an op with TensorList input
y = torch.block_diag(x, x)
return y
self.assert_functionalization(f, torch.ones(2, 2))
logs = self.get_logs(f, torch.ones(2, 2))
# Only seeing copy_() calls in the logs are actually expected:
# - block_diag is a CompositeImplicitAutograd op, implemented in terms of copy_() and a few other ops.
# - copy_() doesn't have an out-of-place variant, so the pass leaves it alone
# - the other ops are all not called on the input tensor, which means that the LoggingTensor doesn't see them
# We can update the output of this test if/when these tests eventually use LoggingTensor with PythonMode
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.copy_(tensor([[1., 1.],
[1., 1.]]), $0)
$2 = torch._ops.aten.copy_(tensor([[1., 1.],
[1., 1.]]), $0)""")
def test_diagonal(self):
def f(x):
# test: view ops that take a subset of the original tensor (select/diagonal)
tmp = torch.ones(2)
y = x.diagonal()
y.add_(tmp)
z = x * x
return z
self.assert_functionalization(f, torch.ones(2, 2))
logs = self.get_logs(f, torch.ones(2, 2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.diagonal($0)
$2 = torch._ops.aten.add($1, tensor([1., 1.]))
$3 = torch._ops.aten.diagonal_scatter($0, $2)
$4 = torch._ops.aten.mul($3, $3)""")
def test_diagonal_mutated_input(self):
def f(x):
# simple test: there are pending updates afterwards, which the test syncs manually
tmp = torch.ones(2)
y = x.diagonal()
y.add_(tmp)
return x
x = torch.ones(2, 2)
self.assert_functionalization(f, x)
def test_split(self):
def f(x):
# test: view ops that return multiple tensors (split)
tmp = torch.ones(2)
y1, y2 = x.split(2)
y3 = y2.diagonal()
y3.add_(tmp)
z = x * x
return y3
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1, $2 = torch._ops.aten.split($0, 2)
$3 = torch._ops.aten.diagonal($2)
$4 = torch._ops.aten.add($3, tensor([1., 1.]))
$5, $6 = torch._ops.aten.split($0, 2)
$7 = torch._ops.aten.diagonal_scatter($6, $4)
$8 = torch._ops.aten.slice_scatter($0, $7, 0, 2, 4)
$9 = torch._ops.aten.mul($8, $8)""")
def test_view_inplace(self):
def f(x):
# test: view + inplace op (transpose_)
tmp = torch.ones(4)
x.transpose_(1, 0)
y = x[0]
y.add_(tmp)
return y
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.transpose($0, 1, 0)
$2 = torch._ops.aten.select($1, 0, 0)
$3 = torch._ops.aten.add($2, tensor([1., 1., 1., 1.]))""")
def test_scalars(self):
def f(x):
# test: the pass can handle scalar inputs properly
tmp = torch.ones(4, 2)
y = x.view(4, 2)
y.add_(1)
z = 2 * y
z.div_(1)
return z
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.view($0, [4, 2])
$2 = torch._ops.aten.add($1, tensor(1))
$3 = torch._ops.aten.mul($2, tensor(2))
$4 = torch._ops.aten.div($3, tensor(1))""")
def test_everything(self):
def f(x):
# test: everything
tmp = torch.ones(2, 2)
y = x.view(8)
z0 = y.reshape(2, 4)
z1 = z0.transpose(1, 0)
z1.unsqueeze_(0)
z1.squeeze_()
z2, z3 = z1.split(2)
z2.add_(tmp)
z4 = z0[0] + z2.reshape(4)
return z2
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.view($0, [8])
$2 = torch._ops.aten._reshape_alias($1, [2, 4], [4, 1])
$3 = torch._ops.aten.transpose($2, 1, 0)
$4 = torch._ops.aten.view($0, [8])
$5 = torch._ops.aten._reshape_alias($4, [2, 4], [4, 1])
$6 = torch._ops.aten.transpose($5, 1, 0)
$7 = torch._ops.aten.unsqueeze($6, 0)
$8 = torch._ops.aten.view($0, [8])
$9 = torch._ops.aten._reshape_alias($8, [2, 4], [4, 1])
$10 = torch._ops.aten.transpose($9, 1, 0)
$11 = torch._ops.aten.unsqueeze($10, 0)
$12 = torch._ops.aten.squeeze($11)
$13, $14 = torch._ops.aten.split($12, 2)
$15 = torch._ops.aten.add($13, tensor([[1., 1.],
[1., 1.]]))
$16 = torch._ops.aten.select($2, 0, 0)
$17 = torch._ops.aten.clone($15, memory_format=0)
$18 = torch._ops.aten._unsafe_view($17, [4])
$19 = torch._ops.aten.view($0, [8])
$20 = torch._ops.aten._reshape_alias($19, [2, 4], [4, 1])
$21 = torch._ops.aten.transpose($20, 1, 0)
$22 = torch._ops.aten.unsqueeze($21, 0)
$23 = torch._ops.aten.squeeze($22)
$24 = torch._ops.aten.slice_scatter($23, $15, 0, 0, 2)
$25 = torch._ops.aten.unsqueeze($24, 0)
$26 = torch._ops.aten.squeeze($25, 0)
$27 = torch._ops.aten.transpose($26, 1, 0)
$28 = torch._ops.aten._reshape_alias($27, [8], [1])
$29 = torch._ops.aten.view($28, [4, 2])
$30 = torch._ops.aten.view($29, [8])
$31 = torch._ops.aten._reshape_alias($30, [2, 4], [4, 1])
$32 = torch._ops.aten.select($31, 0, 0)
$33 = torch._ops.aten.add($32, $18)""")
def test_aliases_maintained_after_pass(self):
def f(x):
tmp = torch.ones(4, 2)
y = x.view(4, 2)
z = x.view(4, 2)
y.add_(tmp)
return y, z
input_functional = torch._to_functional_tensor(torch.ones(4, 2))
torch._enable_functionalization()
try:
y, z = f(input_functional)
torch._sync(y)
torch._sync(z)
finally:
torch._disable_functionalization()
# y and z are aliases inside of the function, and that aliasing relationship should be maintained.
_y = torch._from_functional_tensor(y)
_z = torch._from_functional_tensor(z)
self.assertTrue(are_aliased(_y, _z))
# copy_() gets its own test, because it is special cased in functionalization.
# self.copy_(src) decomposes into src.to(self).expand_as(self).
def test_copy_(self):
def f(x):
tmp = torch.zeros(2, 2)
# NOTE: LoggingTensor isn't a mode, which means that the diagonal call
# will not be logged. This is fine for testing.
tmp_slice = tmp.diagonal()
y = tmp_slice.copy_(x)
z = y.add_(x)
return z
# Test 1: copy_() with same dtype and shape
# to() is a composite op that noops when the dtype/shape match, so nothing gets logged.
self.assert_functionalization(f, torch.ones(2))
logs = self.get_logs(f, torch.ones(2))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.expand($0, [2])
$2 = torch._ops.aten.add($1, $0)""")
# Test 2: copy_() with same dtype, different shape
self.assert_functionalization(f, torch.ones(1))
logs = self.get_logs(f, torch.ones(1))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten.expand($0, [2])
$2 = torch._ops.aten.add($1, $0)""")
# Test 3: copy_() with different dtype, same shape
self.assert_functionalization(f, torch.ones(2, dtype=torch.long))
logs = self.get_logs(f, torch.ones(2, dtype=torch.long))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten._to_copy($0, dtype=6, layout=0, device=device(type='cpu'), pin_memory=False)
$2 = torch._ops.aten.expand($1, [2])
$3 = torch._ops.aten.add($2, $0)""")
# Test 4: copy_() with different dtype, different shape
self.assert_functionalization(f, torch.ones(1, dtype=torch.long))
logs = self.get_logs(f, torch.ones(1, dtype=torch.long))
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.aten._to_copy($0, dtype=6, layout=0, device=device(type='cpu'), pin_memory=False)
$2 = torch._ops.aten.expand($1, [2])
$3 = torch._ops.aten.add($2, $0)""")
def test_nested_functions_propagate_updates(self):
def g(x):
# Create a view of x
y = x[0]
y.add_(1)
# The view, y, gets deallocated at the end of this function
def f(x):
# Calling g(x) should mutate x
g(x)
# We expect x to be synced here, even though the alias created in g() has been deallocated!
y = x + x
return y
self.assert_functionalization(f, torch.ones(2, 2))
if __name__ == '__main__':
run_tests()