| #include <shared_mutex> |
| |
| #include <ATen/ATen.h> |
| #include <ATen/core/op_registration/op_registration.h> |
| #include <c10/core/DispatchKey.h> |
| #include <torch/csrc/autograd/function.h> |
| #include <torch/csrc/distributed/c10d/GroupRegistry.hpp> |
| #include <torch/csrc/distributed/c10d/ProcessGroup.hpp> |
| #include <torch/csrc/distributed/c10d/RankLocal.hpp> |
| |
| namespace { |
| |
| class WorkRegistry { |
| public: |
| void register_work( |
| const at::Tensor& tensor, |
| c10::intrusive_ptr<c10d::Work> work) { |
| const auto storage = tensor.storage().getWeakStorageImpl(); |
| std::unique_lock lock(lock_); |
| auto [it, inserted] = registry_.emplace(storage, work); |
| TORCH_CHECK( |
| inserted || it->second != work, |
| "The tensor storage is already associated with another work."); |
| } |
| |
| c10::intrusive_ptr<c10d::Work> pop_work(const at::Tensor& tensor) { |
| const auto storage = tensor.storage().getWeakStorageImpl(); |
| std::unique_lock lock(lock_); |
| auto it = registry_.find(storage); |
| if (it == registry_.end()) { |
| return nullptr; |
| } |
| auto work = it->second; |
| registry_.erase(it); |
| return work; |
| } |
| |
| private: |
| std::unordered_map< |
| c10::weak_intrusive_ptr<c10::StorageImpl>, |
| c10::intrusive_ptr<c10d::Work>> |
| registry_; |
| std::mutex lock_; |
| }; |
| |
| const std::unordered_map<std::string, c10d::ReduceOp> str_to_reduce_op = { |
| {"sum", c10d::ReduceOp(c10d::ReduceOp::RedOpType::SUM)}, |
| {"avg", c10d::ReduceOp(c10d::ReduceOp::RedOpType::AVG)}, |
| {"product", c10d::ReduceOp(c10d::ReduceOp::RedOpType::PRODUCT)}, |
| {"min", c10d::ReduceOp(c10d::ReduceOp::RedOpType::MIN)}, |
| {"max", c10d::ReduceOp(c10d::ReduceOp::RedOpType::MAX)}, |
| {"band", c10d::ReduceOp(c10d::ReduceOp::RedOpType::BAND)}, |
| {"bor", c10d::ReduceOp(c10d::ReduceOp::RedOpType::BOR)}, |
| {"bxor", c10d::ReduceOp(c10d::ReduceOp::RedOpType::BXOR)}, |
| // TODO: support premul_sum |
| // {"premul_sum", c10d::ReduceOp(c10d::ReduceOp::RedOpType::PREMUL_SUM)}, |
| {"unused", c10d::ReduceOp(c10d::ReduceOp::RedOpType::UNUSED)}}; |
| |
| c10d::ReduceOp to_reduce_op(const std::string& reduce_op) { |
| auto it = str_to_reduce_op.find(reduce_op); |
| TORCH_CHECK( |
| it != str_to_reduce_op.end(), "Unrecognized reduce_op: ", reduce_op); |
| return it->second; |
| } |
| |
| at::Tensor& all_reduce_( |
| at::Tensor& input, |
| std::string reduce_op, |
| // c10::string_view group_name, |
| std::string group_name) { |
| c10d::AllreduceOptions opts; |
| opts.reduceOp = to_reduce_op(reduce_op); |
| |
| std::vector<at::Tensor> inputs{input}; |
| auto group = c10d::resolve_process_group(group_name); |
| auto work = group->allreduce(inputs, opts); |
| c10d::RankLocal<WorkRegistry>::get().register_work(input, work); |
| return input; |
| } |
| |
| at::Tensor all_reduce( |
| const at::Tensor& input, |
| std::string reduce_op, |
| std::string group_name) { |
| auto output = input.clone(); |
| return all_reduce_(output, reduce_op, group_name); |
| } |
| |
| std::vector<at::Tensor> all_reduce_coalesced_( |
| std::vector<at::Tensor> inputs, |
| std::string reduce_op, |
| std::string group_name) { |
| c10d::AllreduceCoalescedOptions opts; |
| opts.reduceOp = to_reduce_op(reduce_op); |
| |
| auto group = c10d::resolve_process_group(group_name); |
| auto work = group->allreduce_coalesced(inputs, opts); |
| for (const auto& tensor : inputs) { |
| c10d::RankLocal<WorkRegistry>::get().register_work(tensor, work); |
| } |
| return inputs; |
| } |
| |
| std::vector<at::Tensor> all_reduce_coalesced( |
| std::vector<at::Tensor> inputs, |
| std::string reduce_op, |
| std::string group_name) { |
| std::vector<at::Tensor> outputs; |
| for (const auto& tensor : inputs) { |
| outputs.push_back(tensor.clone()); |
| } |
| return all_reduce_coalesced_(outputs, reduce_op, group_name); |
| } |
| |
| at::Tensor allocate_all_gather_output( |
| const at::Tensor& input, |
| int64_t group_size) { |
| auto output_size = input.sizes().vec(); |
| output_size[0] *= group_size; |
| return at::empty( |
| output_size, |
| at::TensorOptions().dtype(input.dtype()).device(input.device())); |
| } |
| |
| std::vector<at::Tensor> all_gather_into_tensor_coalesced( |
| std::vector<at::Tensor> inputs, |
| int64_t group_size, |
| std::string group_name) { |
| std::vector<at::Tensor> outputs; |
| for (const auto& tensor : inputs) { |
| outputs.push_back(allocate_all_gather_output(tensor, group_size)); |
| } |
| |
| auto group = c10d::resolve_process_group(group_name); |
| auto work = group->allgather_into_tensor_coalesced( |
| outputs, const_cast<std::vector<at::Tensor>&>(inputs)); |
| for (const auto& tensor : outputs) { |
| c10d::RankLocal<WorkRegistry>::get().register_work(tensor, work); |
| } |
| return outputs; |
| } |
| |
| at::Tensor all_gather_into_tensor( |
| const at::Tensor& input, |
| int64_t group_size, |
| std::string group_name) { |
| std::vector<at::Tensor> inputs{input}; |
| return all_gather_into_tensor_coalesced(inputs, group_size, group_name)[0]; |
| } |
| |
| at::Tensor allocate_reduce_scatter_output( |
| const at::Tensor& input, |
| const int64_t group_size) { |
| auto output_size = input.sizes().vec(); |
| if (output_size[0] % group_size != 0) { |
| LOG(WARNING) << "The first dimension of the reduce_scatter input (" |
| << output_size[0] << ") is not divisible by the group size (" |
| << group_size << ")."; |
| } |
| output_size[0] /= group_size; |
| return at::empty( |
| output_size, |
| at::TensorOptions().dtype(input.dtype()).device(input.device())); |
| } |
| |
| std::vector<at::Tensor> reduce_scatter_tensor_coalesced( |
| std::vector<at::Tensor> inputs, |
| std::string reduce_op, |
| int64_t group_size, |
| std::string group_name) { |
| c10d::ReduceScatterOptions opts; |
| opts.reduceOp = to_reduce_op(reduce_op); |
| std::vector<at::Tensor> outputs; |
| for (const auto& tensor : inputs) { |
| outputs.push_back(allocate_reduce_scatter_output(tensor, group_size)); |
| } |
| |
| auto group = c10d::resolve_process_group(group_name); |
| auto work = group->reduce_scatter_tensor_coalesced( |
| outputs, const_cast<std::vector<at::Tensor>&>(inputs), opts); |
| for (const auto& tensor : outputs) { |
| c10d::RankLocal<WorkRegistry>::get().register_work(tensor, work); |
| } |
| return outputs; |
| } |
| |
| at::Tensor reduce_scatter_tensor( |
| const at::Tensor& input, |
| std::string reduce_op, |
| int64_t group_size, |
| std::string group_name) { |
| std::vector<at::Tensor> inputs{input}; |
| return reduce_scatter_tensor_coalesced( |
| inputs, reduce_op, group_size, group_name)[0]; |
| } |
| |
| at::Tensor all_to_all_single( |
| const at::Tensor& input, |
| std::vector<int64_t> output_split_sizes, |
| std::vector<int64_t> input_split_sizes, |
| std::string group_name) { |
| std::vector<int64_t> output_sizes = input.sizes().vec(); |
| output_sizes[0] = |
| std::accumulate(output_split_sizes.begin(), output_split_sizes.end(), 0); |
| auto output = input.new_empty(output_sizes); |
| |
| auto group = c10d::resolve_process_group(group_name); |
| auto work = group->alltoall_base( |
| output, |
| const_cast<at::Tensor&>(input), |
| output_split_sizes, |
| input_split_sizes); |
| c10d::RankLocal<WorkRegistry>::get().register_work(output, work); |
| return output; |
| } |
| |
| at::Tensor wait_tensor(const at::Tensor& tensor) { |
| auto work = c10d::RankLocal<WorkRegistry>::get().pop_work(tensor); |
| if (work != nullptr) { |
| work->wait(); |
| } |
| return tensor; |
| } |
| |
| } // namespace |
| |
| TORCH_LIBRARY(_c10d_functional, m) { |
| m.def( |
| "all_reduce(Tensor input, str reduce_op, str group_name) -> Tensor", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, ::all_reduce), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "all_reduce_(Tensor(a!) input, str reduce_op, str group_name) -> Tensor(a!)", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, ::all_reduce_), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "all_reduce_coalesced(Tensor[] inputs, str reduce_op, str group_name) -> Tensor[]", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, ::all_reduce_coalesced), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "all_reduce_coalesced_(Tensor[](a!) inputs, str reduce_op, str group_name) -> Tensor[](a!)", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, ::all_reduce_coalesced_), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "all_gather_into_tensor(Tensor input, int group_size, str group_name) -> Tensor", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, |
| ::all_gather_into_tensor), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "all_gather_into_tensor_coalesced(Tensor[] inputs, int group_size, str group_name) -> Tensor[]", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, |
| ::all_gather_into_tensor_coalesced), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "reduce_scatter_tensor(Tensor input, str reduce_op, int group_size, str group_name) -> Tensor", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, ::reduce_scatter_tensor), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "reduce_scatter_tensor_coalesced(Tensor[] inputs, str reduce_op, int group_size, str group_name) -> Tensor[]", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, |
| ::reduce_scatter_tensor_coalesced), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "all_to_all_single(" |
| "Tensor input, " |
| "SymInt[] output_split_sizes, " |
| "SymInt[] input_split_sizes, " |
| "str group_name) -> Tensor", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, ::all_to_all_single), |
| {at::Tag::pt2_compliant_tag}); |
| |
| m.def( |
| "wait_tensor(Tensor tensor) -> Tensor", |
| torch::dispatch( |
| c10::DispatchKey::CompositeExplicitAutograd, ::wait_tensor), |
| {at::Tag::pt2_compliant_tag}); |
| } |