| import enum |
| import torch |
| import warnings |
| import inspect |
| from sys import maxsize as maxsize |
| from typing import Set |
| |
| import torch.onnx |
| # This import monkey-patches graph manipulation methods on Graph, used for the |
| # ONNX symbolics |
| import torch.onnx.utils |
| |
| from functools import wraps |
| from torch._C import OptionalType |
| |
| |
| # Note [Edit Symbolic Files] |
| # EDITING THIS FILE AND SYMBOLIC_OPSET<VERSION> FILES? READ THIS FIRST! |
| # |
| # - Module-level functions are called to convert the corresponding op in the `aten` domain. |
| # E.g. symbolic_opset9.foo is called to convert aten::foo. |
| # Symbolic functions for other domains are staticmethods in classes named after the domain. |
| # E.g. symbolic_opset9.Prim.ConstantChunk is called to convert prim::ConstantChunk. |
| # - Parameter names must *exactly* match the names in |
| # aten/src/ATen/native/native_functions.yaml, because |
| # dispatch is done with keyword arguments. |
| # - Looking for inplace ops? They're detected by |
| # `_jit_pass_onnx_remove_inplace_ops_for_onnx`, and |
| # transparently dispatched to their non inplace versions in |
| # "run_symbolic_function". See Note [Export inplace] |
| # |
| # ---------------------------------------------------------------------------------- |
| # A note on Tensor types |
| # ---------------------------------------------------------------------------------- |
| # |
| # In general, we should avoid depending on the type of Tensor Values contained |
| # within the trace graph. However, this is sometimes unavoidable (due to ONNX |
| # spec requirements, etc). The TensorType object has accessors for these properties |
| # that return the property if it is statically known and return nullopt otherwise. |
| # |
| # In general, we should prefer to rely on the least specific information possible. |
| # For example, not relying on tensor properties at all is better than relying |
| # on the number of dimensions which is better than relying on |
| # concrete shapes. Doing so will make the export symbolics |
| # more robust to different graphs. |
| # |
| # ---------------------------------------------------------------------------------- |
| # Extra context for symbolic functions |
| # ---------------------------------------------------------------------------------- |
| # |
| # In general, symbolic functions only require inputs and attributes to |
| # the original node. In rare circumstances, extra context may be required. |
| # For example, symbolic function for `prim::Loop` needs access to the subblock of |
| # the original node. |
| # A symbolic function that has a first arg (before the Graph object) with the |
| # type annotation of torch.onnx.SymbolicContext will be called with that additional context. |
| # During export, it is populated from `utils._run_symbolic_function` |
| # to contain the context for each node being converted. |
| |
| # --------------------------------------------------------------------------------- |
| # Helper functions |
| # --------------------------------------------------------------------------------- |
| |
| # Save some builtins as locals, because we'll shadow them below |
| _sum = sum |
| |
| |
| def _parse_arg(value, desc, arg_name=None, node_name=None): |
| if desc == "none": |
| return value |
| if desc == "v" or not _is_value(value): |
| return value |
| if value.node().mustBeNone(): |
| return None |
| if value.node().kind() == "onnx::Constant": |
| tval = value.node()["value"] |
| if desc == "i": |
| return int(tval) |
| elif desc == "f": |
| return float(tval) |
| elif desc == "b": |
| return bool(tval) |
| elif desc == "s": |
| return str(tval) |
| elif desc == "t": |
| return tval |
| elif desc == "is": |
| return [int(v) for v in tval] |
| elif desc == "fs": |
| return [float(v) for v in tval] |
| else: |
| raise RuntimeError("ONNX symbolic doesn't know to interpret Constant node") |
| elif value.node().kind() == "prim::ListConstruct": |
| if desc == "is": |
| for v in value.node().inputs(): |
| if v.node().kind() != "onnx::Constant": |
| raise RuntimeError("Failed to export an ONNX attribute '" + v.node().kind() + |
| "', since it's not constant, please try to make " |
| "things (e.g., kernel size) static if possible") |
| return [int(v.node()["value"]) for v in value.node().inputs()] |
| else: |
| raise RuntimeError("ONNX symbolic doesn't know to interpret ListConstruct node") |
| |
| if arg_name is None or node_name is None: |
| raise RuntimeError("Expected node type 'onnx::Constant', got '{}'.".format(value.node().kind())) |
| else: |
| raise RuntimeError("Expected node type 'onnx::Constant' " |
| "for argument '{}' of node '{}', got '{}'.".format(arg_name, node_name, value.node().kind())) |
| |
| |
| def _maybe_get_const(value, desc): |
| if _is_value(value) and value.node().kind() == "onnx::Constant": |
| return _parse_arg(value, desc) |
| return value |
| |
| |
| def _maybe_get_scalar(value): |
| value_t = _maybe_get_const(value, "t") |
| if isinstance(value_t, torch.Tensor) and value_t.shape == (): |
| return value_t |
| return value |
| |
| |
| def _get_const(value, desc, arg_name): |
| if not _is_constant(value): |
| raise RuntimeError("ONNX symbolic expected a constant value of the {} argument, got `{}`".format(arg_name, value)) |
| return _parse_arg(value, desc) |
| |
| |
| def _unpack_list(list_value): |
| list_node = list_value.node() |
| assert list_node.kind() == "prim::ListConstruct" |
| return list(list_node.inputs()) |
| |
| def _unpack_tuple(tuple_value): |
| tuple_node = tuple_value.node() |
| if tuple_node.kind() != "prim::TupleConstruct": |
| raise RuntimeError("ONNX symbolic expected node type `prim::TupleConstruct`, got `{}`".format(tuple_node)) |
| return list(tuple_node.inputs()) |
| |
| # Check if list_value is output from prim::ListConstruct |
| # This is usually called before _unpack_list to ensure the list can be unpacked. |
| def _is_packed_list(list_value): |
| return _is_value(list_value) and list_value.node().kind() == "prim::ListConstruct" |
| |
| |
| def parse_args(*arg_descriptors): |
| """A decorator which converts args from torch._C.Value to built-in types. |
| |
| For example: |
| @parse_args('v', 'i', 'fs') |
| foo(g, a, b, c): |
| assert isinstance(a, torch._C.Value) |
| assert isinstance(b, int) |
| assert isinstance(c, list) |
| assert isinstance(c[0], float) |
| |
| Args: |
| arg_descriptors: list of str, where each element is |
| a string that specifies the type to convert to. Valid descriptors: |
| "v": no conversion, keep torch._C.Value. |
| "i": int |
| "is": list(int) |
| "f": float |
| "fs": list of float |
| "b": bool |
| "s": str |
| "t": torch.Tensor |
| """ |
| |
| def decorator(fn): |
| fn._arg_descriptors = arg_descriptors |
| |
| @wraps(fn) |
| def wrapper(g, *args, **kwargs): |
| # some args may be optional, so the length may be smaller |
| assert len(arg_descriptors) >= len(args) |
| try: |
| sig = inspect.signature(fn) |
| arg_names = list(sig.parameters.keys())[1:] |
| fn_name = fn.__name__ |
| except Exception: |
| arg_names = [None] * len(args) # type: ignore[list-item] |
| fn_name = None |
| args = [_parse_arg(arg, arg_desc, arg_name, fn_name) # type: ignore[assignment] |
| for arg, arg_desc, arg_name in zip(args, arg_descriptors, arg_names)] |
| # only support _outputs in kwargs |
| assert len(kwargs) <= 1 |
| if len(kwargs) == 1: |
| assert "_outputs" in kwargs |
| return fn(g, *args, **kwargs) |
| |
| return wrapper |
| return decorator |
| |
| def quantized_args(*arg_q_descriptors, scale=None, zero_point=None): |
| """A decorator which extends support for quantized version of the base operator. |
| Quantization is detected by examining the arguments that are annotated by |
| `arg_q_descriptors`. |
| If quantization is detected, the base operator symbolic function will be wrapped with |
| argument dequantization and output quantization. |
| Otherwise, only base symbolic function will be invoked. |
| |
| For example: |
| @quantized_args(True, False) |
| def foo(g, x, y): |
| return x + y |
| |
| is equivalent to |
| |
| def q_foo(g, x, y): |
| if is_quantized_tensor(x): |
| x = dequantize(x) |
| out = foo(g, x, y) |
| return quantize(out) |
| else: |
| return foo(g, x, y) |
| |
| Args: |
| arg_q_descriptors: list of bool, where each element represents if the |
| argument is QTensor for quantized version of this operator. |
| scale: float default None, quantized output scale. If None, derive from |
| the first quantized input scale. |
| zero_point: int default None, quantized output zero point. If None, |
| derive from the first quantized input zero point. |
| """ |
| def decorator(fn): |
| fn._scale = scale |
| fn._zero_point = zero_point |
| |
| @wraps(fn) |
| def wrapper(g, *args, **kwargs): |
| _scale = fn._scale |
| if _scale is not None: |
| _scale = g.op("Constant", value_t=torch.tensor(_scale)) |
| _zero_point = fn._zero_point |
| if _zero_point is not None: |
| _zero_point = g.op("Constant", value_t=torch.tensor(_zero_point)) |
| |
| # some args may be optional, so the length may be smaller |
| assert len(arg_q_descriptors) >= len(args) |
| desc_args = tuple(zip(arg_q_descriptors[:len(args)], args)) |
| # Run regular symbolic function if none of the argument is QTensor. |
| if not any((desc and arg.node().kind() == "prim::TupleConstruct") for desc, arg in desc_args): |
| return fn(g, *args, **kwargs) |
| |
| dequantized_args = [] |
| for desc, arg in desc_args: |
| if desc: |
| dequantized_arg, scale, zero_point = dequantize_helper(g, arg) |
| dequantized_args.append(dequantized_arg) |
| if _scale is None: |
| _scale = scale |
| if _zero_point is None: |
| _zero_point = zero_point |
| else: |
| dequantized_args.append(arg) |
| # TODO: only support single output |
| output = fn(g, *dequantized_args, **kwargs) |
| |
| return quantize_helper(g, output, _scale, _zero_point) |
| return wrapper |
| return decorator |
| |
| def _scalar(x): |
| """Convert a scalar tensor into a Python value.""" |
| assert x.numel() == 1 |
| return x.item() |
| |
| |
| def _if_scalar_type_as(g, self, tensor): |
| """ |
| Convert self into the same type of tensor, as necessary. |
| |
| We only support implicit casting for scalars, so we never |
| actually need to insert an ONNX cast operator here; just |
| fix up the scalar. |
| """ |
| if isinstance(self, torch._C.Value): |
| return self |
| |
| scalar_type = tensor.type().scalarType() |
| if scalar_type: |
| ty = scalar_type.lower() |
| return getattr(self, ty)() |
| |
| return self |
| |
| |
| def _is_none(x): |
| return x.node().mustBeNone() |
| |
| def _is_value(x): |
| return isinstance(x, torch._C.Value) |
| |
| def _is_constant(value): |
| return not _is_value(value) or value.node().kind() in ('onnx::Constant', 'prim::Constant') |
| |
| def _is_tensor(x): |
| return x.type().isSubtypeOf(torch._C.TensorType.get()) |
| |
| def _is_list(x): |
| return isinstance(x.type(), torch._C.ListType) |
| |
| def _is_tensor_list(x): |
| return _is_list(x) and isinstance(x.type().getElementType(), torch._C.TensorType) |
| |
| def _is_scalar_list(x): |
| """ |
| Check if x is a scalar list, for example: List[float], List[int]. |
| |
| Besides checking the type is ListType, we also check if the data type is |
| a valid ONNX data type. |
| """ |
| element_type = str(x.type().getElementType()) |
| return _is_list(x) and \ |
| element_type in scalar_name_to_pytorch.keys() and \ |
| (scalar_name_to_pytorch[element_type] in cast_pytorch_to_onnx.keys()) |
| |
| def _get_tensor_rank(x): |
| if not _is_tensor(x) or x.type() is None: |
| return None |
| return x.type().dim() |
| |
| def _get_tensor_sizes(x, allow_nonstatic=True): |
| if not _is_tensor(x) or x.type() is None: |
| return None |
| if allow_nonstatic: |
| # Each individual symbol is returned as None. |
| # e.g. [1, "a", "b"] -> [1, None, None] |
| return x.type().varyingSizes() |
| # returns None, if exists any symbol in sizes. |
| # e.g. [1, "a", "b"] -> None |
| return x.type().sizes() |
| |
| def _get_tensor_dim_size(x, dim): |
| try: |
| sizes = _get_tensor_sizes(x) |
| return sizes[dim] |
| except Exception: |
| pass |
| return None |
| |
| def _unimplemented(op, msg): |
| warnings.warn("ONNX export failed on " + op + " because " + msg + " not supported") |
| |
| |
| def _onnx_unsupported(op_name): |
| raise RuntimeError("Unsupported: ONNX export of operator {}. " |
| "Please feel free to request support or submit a pull request on PyTorch GitHub.".format(op_name)) |
| |
| |
| def _onnx_opset_unsupported(op_name, current_opset, supported_opset): |
| raise RuntimeError("Unsupported: ONNX export of {} in " |
| "opset {}. Please try opset version {}.".format(op_name, current_opset, supported_opset)) |
| |
| def _onnx_opset_unsupported_detailed(op_name, current_opset, supported_opset, reason): |
| raise RuntimeError("Unsupported: ONNX export of {} in " |
| "opset {}. {}. Please try opset version {}.".format(op_name, current_opset, reason, supported_opset)) |
| |
| |
| def _block_list_in_opset(name): |
| def symbolic_fn(*args, **kwargs): |
| raise RuntimeError("ONNX export failed on {}, which is not implemented for opset {}. " |
| "Try exporting with other opset versions." |
| .format(name, _export_onnx_opset_version)) |
| return symbolic_fn |
| |
| |
| def _try_get_scalar_type(*args): |
| for arg in args: |
| try: |
| return arg.type().scalarType() |
| except RuntimeError: |
| pass |
| return None |
| |
| |
| def _select_helper(g, self, dim, index, apply_reshape=True): |
| index_const = _maybe_get_scalar(index) |
| index_dim = _get_tensor_rank(index) |
| if not _is_value(index_const): |
| # Index is a constant scalar. Make it a size 1 constant tensor. |
| index = g.op("Constant", value_t=torch.LongTensor([index_const])) |
| elif index_dim is not None and apply_reshape: |
| if index_dim == 0: |
| # Index is a scalar. Reshape it to a size 1 tensor. |
| index = _reshape_helper(g, index, g.op("Constant", value_t=torch.LongTensor([1]))) |
| |
| index_scalar_type = index.type().scalarType() |
| if index_scalar_type is None or index_scalar_type not in ["Long", "Int"]: |
| index = g.op("Cast", index, to_i=cast_pytorch_to_onnx["Long"]) |
| return g.op("Gather", self, index, axis_i=dim) |
| |
| |
| def _slice_helper(g, input, axes, starts, ends, steps=None, dynamic_slice=False): |
| if _export_onnx_opset_version <= 9: |
| from torch.onnx.symbolic_opset9 import _slice as _slice9 |
| return _slice9(g, input, axes, starts, ends) |
| else: |
| from torch.onnx.symbolic_opset10 import _slice as _slice10 |
| return _slice10(g, input, axes, starts, ends, steps, dynamic_slice) |
| |
| def _is_fp(value): |
| if value: |
| if isinstance(value, torch.Tensor): |
| return value.dtype in (torch.float16, torch.float32, torch.float64, torch.bfloat16) |
| else: |
| type = value.type().scalarType() |
| if type is None: |
| warnings.warn("Type cannot be inferred, which might cause exported graph to produce incorrect results.") |
| return type in ("Float", "Double", "Half", "BFloat16") |
| return False |
| |
| def _generate_wrapped_number(g, scalar): |
| """ |
| Create a wrapped number based on https://github.com/pytorch/pytorch/issues/9515 |
| A Tensor is a considered a "wrapped number" if it is |
| auto-wrapped from a C++ or Python number type. Integer types are |
| wrapped as 0-dim int64 tensors and floating-point types are |
| wrapped as 0-dim double tensors. |
| |
| The input to this function is constant value. If the data type |
| is a floating point type, it is converted to a 0-dim double |
| tensor, else it is converted to a 0-dim tensor of its original type |
| """ |
| assert not isinstance(scalar, torch.Tensor) |
| if isinstance(scalar, float): |
| return g.op("Constant", value_t=torch.tensor(scalar, dtype=torch.double)) |
| return g.op("Constant", value_t=torch.tensor(scalar)) |
| |
| def _sort_helper(g, input, dim, decending=True, out=None): |
| if out is not None: |
| _unimplemented("Sort", "Out parameter is not supported") |
| shape_ = g.op("Shape", input) |
| dim_size_ = g.op("Gather", shape_, g.op("Constant", value_t=torch.tensor([dim], dtype=torch.int64))) |
| if _export_onnx_opset_version <= 10: |
| if not decending: |
| _unimplemented("Sort", "Ascending is not supported") |
| return g.op("TopK", input, dim_size_, axis_i=dim, outputs=2) |
| else: |
| return g.op("TopK", input, dim_size_, axis_i=dim, largest_i=decending, outputs=2) |
| |
| |
| def _topk_helper(g, input, k, dim, largest=True, sorted=False, out=None): |
| if out is not None: |
| _unimplemented("TopK", "Out parameter is not supported") |
| if not _is_value(k): |
| k = g.op("Constant", value_t=torch.tensor([k], dtype=torch.int64)) |
| else: |
| k = _reshape_helper(g, k, g.op("Constant", value_t=torch.tensor([1]))) |
| if _export_onnx_opset_version <= 10: |
| if not largest: |
| _unimplemented("TopK", "Ascending is not supported") |
| return g.op("TopK", input, k, axis_i=dim, outputs=2) |
| else: |
| return g.op("TopK", input, k, axis_i=dim, largest_i=largest, sorted_i=sorted, outputs=2) |
| |
| |
| def _lt_helper(g, input, other): |
| if _export_onnx_opset_version <= 8: |
| from torch.onnx.symbolic_opset8 import lt as _lt8 |
| return _lt8(g, input, other) |
| else: |
| from torch.onnx.symbolic_opset9 import lt as _lt9 |
| return _lt9(g, input, other) |
| |
| |
| def _interpolate_warning(interpolate_mode): |
| onnx_op = "onnx:Resize" if _export_onnx_opset_version >= 10 else "onnx:Upsample" |
| warnings.warn("You are trying to export the model with " + onnx_op + " for ONNX opset version " |
| "" + str(_export_onnx_opset_version) + ". " |
| "This operator might cause results to not match the expected results by PyTorch.\n" |
| "ONNX's Upsample/Resize operator did not match Pytorch's Interpolation until opset 11. " |
| "Attributes to determine how to transform the input were added in onnx:Resize in opset 11 " |
| "to support Pytorch's behavior (like coordinate_transformation_mode and nearest_mode).\n" |
| "We recommend using opset 11 and above for models using this operator.") |
| |
| def _unsqueeze_helper(g, input, axes_i): |
| if _export_onnx_opset_version >= 13: |
| axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long)) |
| return g.op("Unsqueeze", input, axes) |
| else: |
| return g.op("Unsqueeze", input, axes_i=axes_i) |
| |
| def _squeeze_helper(g, input, axes_i): |
| if _export_onnx_opset_version >= 13: |
| axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long)) |
| return g.op("Squeeze", input, axes) |
| else: |
| return g.op("Squeeze", input, axes_i=axes_i) |
| |
| def _reducesum_helper(g, input, axes_i=None, keepdims_i=1, noop_with_empty_axes_i=0): |
| keepdims_i = _maybe_get_const(keepdims_i, "i") |
| if _export_onnx_opset_version >= 13: |
| if axes_i: |
| if not _is_value(axes_i): |
| axes_i = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long)) |
| return g.op("ReduceSum", input, axes_i, keepdims_i=keepdims_i, noop_with_empty_axes_i=noop_with_empty_axes_i) |
| return g.op("ReduceSum", input, keepdims_i=keepdims_i, noop_with_empty_axes_i=noop_with_empty_axes_i) |
| else: |
| return g.op("ReduceSum", input, axes_i=axes_i, keepdims_i=keepdims_i) |
| |
| def _interpolate_size_to_scales(g, input, output_size, dim): |
| output_size = _maybe_get_const(output_size, "is") |
| if _is_value(output_size): |
| offset = 2 |
| offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.float32)) |
| dividend = g.op("Cast", output_size, to_i=cast_pytorch_to_onnx["Float"]) |
| divisor = _slice_helper(g, g.op("Shape", input), axes=[0], ends=[maxsize], starts=[offset]) |
| divisor = g.op("Cast", divisor, to_i=cast_pytorch_to_onnx["Float"]) |
| scale_dims = g.op("Div", dividend, divisor) |
| scales = g.op("Concat", offsets, scale_dims, axis_i=0) |
| else: |
| scales_constant = [1. if i < 2 else |
| float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)]) |
| for i in range(0, dim)] |
| scales = g.op("Constant", value_t=torch.tensor(scales_constant, dtype=torch.float32)) |
| return scales |
| |
| |
| def _interpolate_get_scales_if_available(g, scales): |
| available_scales = _maybe_get_const(scales[0], "fs") != -1 and not _is_none(scales[0]) |
| |
| if not available_scales: |
| return None |
| |
| offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32)) |
| scales_list = g.op("Constant", value_t=torch.tensor(_maybe_get_const(scales[0], "fs"))) |
| scales = g.op("Concat", offsets, scales_list, axis_i=0) |
| return scales |
| |
| |
| def _get_interpolate_attributes(g, mode, args): |
| if mode == "nearest": |
| align_corners = None |
| scales = args[0:] |
| else: |
| align_corners = args[0] |
| scales = args[1:] |
| scales = _interpolate_get_scales_if_available(g, scales) |
| return scales, align_corners |
| |
| def _interpolate_get_scales(g, scale_factor, dim): |
| offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32)) |
| scale_factor_rank = _get_tensor_rank(scale_factor) |
| if isinstance(scale_factor.type(), torch._C.ListType) or (scale_factor_rank is not None and scale_factor_rank > 0): |
| return g.op("Concat", offsets, scale_factor, axis_i=0) |
| else: |
| scale_factor = _unsqueeze_helper(g, scale_factor, [0]) |
| scale_factor = g.op("Cast", scale_factor, to_i=cast_pytorch_to_onnx["Float"]) |
| scales = [scale_factor for i in range(dim - 2)] |
| scale_factor = g.op("Concat", offsets, *scales, axis_i=0) |
| return scale_factor |
| |
| |
| def _interpolate_get_scales_and_mode(g, input, size, scale_factor, mode , align_corners): |
| mode = _maybe_get_const(mode, "s") |
| if "linear" in mode: |
| mode = "linear" |
| if "cubic" in mode: |
| mode = "cubic" |
| _interpolate_warning(mode) |
| |
| align_corners = _maybe_get_const(align_corners, "b") |
| if isinstance(align_corners, bool) and align_corners: |
| return _unimplemented("interpolate", "align_corners == True") |
| |
| if not input.type().dim(): |
| return _unimplemented("interpolate", "missing input shape") |
| dim = input.type().dim() |
| |
| if not _is_none(scale_factor): |
| scale_factor = _interpolate_get_scales(g, scale_factor, dim) |
| elif not _is_none(size): |
| if not _is_packed_list(size): |
| is_scalar = ((_maybe_get_const(size, "t").dim() == 0)) |
| if is_scalar: |
| size = _unsqueeze_helper(g, size, [0]) |
| size = [size for i in range(dim - 2)] |
| size = g.op("Concat", *size, axis_i=0) |
| scale_factor = _interpolate_size_to_scales(g, input, size, dim) |
| else: |
| return _unimplemented("interpolate", "Both size and scales are None in __interpolate") |
| return scale_factor, mode |
| |
| |
| def _interpolate_helper(name, dim, interpolate_mode): |
| def symbolic_fn(g, input, output_size, *args): |
| scales, align_corners = _get_interpolate_attributes(g, interpolate_mode, args) |
| align_corners = _maybe_get_scalar(align_corners) |
| coordinate_transformation_mode = "asymmetric" if interpolate_mode == "nearest" \ |
| else "align_corners" if align_corners else "pytorch_half_pixel" |
| |
| if scales is None: |
| input_size = g.op("Shape", input) |
| input_size_beg = _slice_helper(g, input_size, axes=[0], ends=[2], starts=[0]) |
| output_size = g.op("Cast", output_size, to_i=cast_pytorch_to_onnx["Long"]) |
| output_size = g.op("Concat", input_size_beg, output_size, axis_i=0) |
| |
| if _export_onnx_opset_version >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| empty_scales = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| empty_scales = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| |
| return g.op("Resize", |
| input, |
| empty_roi, |
| empty_scales, |
| output_size, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=interpolate_mode, # nearest, linear, or cubic |
| nearest_mode_s="floor") # only valid when mode="nearest" |
| else: |
| if _export_onnx_opset_version >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| |
| return g.op("Resize", |
| input, |
| empty_roi, |
| scales, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=interpolate_mode, # nearest, linear, or cubic |
| nearest_mode_s="floor") # only valid when mode="nearest" |
| return symbolic_fn |
| |
| |
| def __interpolate_helper(g, input, size, scale_factor, mode, align_corners, recompute_scale_factor): |
| mode = _maybe_get_const(mode, "s") |
| if "linear" in mode: |
| mode = "linear" |
| if "cubic" in mode: |
| mode = "cubic" |
| align_corners = _maybe_get_const(align_corners, "b") |
| align_corners = False if not isinstance(align_corners, bool) else align_corners |
| coordinate_transformation_mode = "asymmetric" if mode == "nearest" \ |
| else "align_corners" if align_corners else "pytorch_half_pixel" |
| |
| if not _is_none(size) : |
| input_size = g.op("Shape", input) |
| input_size = _slice_helper(g, input_size, axes=[0], ends=[2], starts=[0]) |
| # in some cases size is not a packed list but size is a scalar |
| # We need to also verify that (_maybe_get_const(size, "t").dim() == 0) |
| # but this information is not always available. Try to get the dim, |
| # and if not assume that it is not a scalar. |
| try: |
| is_scalar = not _is_packed_list(size) and ((_maybe_get_const(size, "t").dim() == 0)) |
| except AttributeError: |
| is_scalar = not _is_packed_list(size) |
| if not is_scalar: |
| warnings.warn("Cannot verify if the output_size is a scalar " |
| "while exporting interpolate. Assuming that it is not a scalar.") |
| |
| if is_scalar: |
| rank = _get_tensor_rank(input) |
| if rank is None: |
| return _unimplemented("interpolate (with a scalar output_size)", |
| "missing input shape (try giving an array of output_size values)") |
| size = _unsqueeze_helper(g, size, [0]) |
| size = [size for i in range(rank - 2)] |
| size = g.op("Concat", *size, axis_i=0) |
| size = g.op("Cast", size, to_i=cast_pytorch_to_onnx["Long"]) |
| size = g.op("Concat", input_size, size, axis_i=0) |
| |
| if _export_onnx_opset_version >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| empty_scales = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| empty_scales = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| |
| return g.op("Resize", |
| input, |
| empty_roi, |
| empty_scales, |
| size, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=mode, # nearest, linear, or cubic |
| nearest_mode_s="floor") |
| else: # if not _is_none(scales) |
| rank = _get_tensor_rank(input) |
| if rank is None: |
| return _unimplemented("interpolate (with scales)", "missing input shape") |
| |
| if _export_onnx_opset_version >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| |
| scales = _interpolate_get_scales(g, scale_factor, rank) |
| return g.op("Resize", |
| input, |
| empty_roi, |
| scales, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=mode, # nearest, linear, or cubic |
| nearest_mode_s="floor") # only valid when mode="nearest" |
| |
| |
| def _unbind_helper(g, self, dim, _outputs): |
| if _export_onnx_opset_version < 11: |
| from torch.onnx.symbolic_opset9 import unbind |
| elif _export_onnx_opset_version <= 12: |
| from torch.onnx.symbolic_opset11 import unbind # type: ignore[no-redef] |
| else: |
| from torch.onnx.symbolic_opset13 import unbind # type: ignore[no-redef] |
| return unbind(g, self, dim, _outputs) |
| |
| |
| def _scatter_helper(g, self, dim, index, src): |
| if _export_onnx_opset_version <= 10: |
| from torch.onnx.symbolic_opset9 import scatter |
| else: |
| # for mypy, scatter was imported two lines above |
| from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef] |
| return scatter(g, self, dim, index, src) |
| |
| def _repeat_interleave_split_helper(g, self, reps, dim): |
| if _export_onnx_opset_version <= 12: |
| return g.op("Split", self, split_i=[1] * reps, axis_i=dim, outputs=reps) |
| else: |
| from torch.onnx.symbolic_opset13 import split |
| repeats = g.op("Constant", value_t=torch.tensor([1] * reps)) |
| return split(g, self, repeats, dim, _outputs=reps) |
| |
| def _arange_cast_helper(g, end, start=None, step=None, dtype=None): |
| def _is_all_integral(scalars): |
| for scalar in scalars: |
| try: |
| if scalar.type().scalarType() != "Long": |
| return False |
| except Exception: |
| pass |
| return True |
| |
| # This logic is based on torch.arange docs. If "dtype" is provided, |
| # infer input types from dtype. If not, then check if any of start, stop, |
| # or step are floating point, and infer the type from get_default. |
| # Otherwise, the dtype is inferred to be torch.int64. |
| if dtype is None or (_is_value(dtype) and _is_none(dtype)): |
| if _is_all_integral([start, end, step]): |
| type = scalar_type_to_pytorch_type.index(torch.int64) |
| else: |
| type = scalar_type_to_pytorch_type.index(torch.get_default_dtype()) |
| else: |
| type = dtype |
| |
| start = g.op("Cast", start, to_i=scalar_type_to_onnx[type]) if start else None |
| end = g.op("Cast", end, to_i=scalar_type_to_onnx[type]) if end else None |
| step = g.op("Cast", step, to_i=scalar_type_to_onnx[type]) if step else None |
| return type, end, start, step |
| |
| def _arange_helper(g, *args): |
| if _export_onnx_opset_version <= 10: |
| from torch.onnx.symbolic_opset9 import arange |
| else: |
| from torch.onnx.symbolic_opset11 import arange # type: ignore[no-redef] |
| return arange(g, *args) |
| |
| def _size_helper(g, self, dim): |
| full_shape = g.op("Shape", self) |
| from torch.onnx.symbolic_opset9 import select |
| return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim) |
| |
| |
| def _index_fill_reshape_helper(g, self, dim, index): |
| # 1. reshape index => [1, ..., 1, dim, 1, ..., 1] |
| # 2. expand index => [..., dim, ...], same shape as self except for dim. |
| # 3. expand value as well. |
| # 4. apply onnx::scatter. |
| |
| from torch.onnx.symbolic_opset9 import expand |
| if _export_onnx_opset_version <= 10: |
| from torch.onnx.symbolic_opset9 import scatter |
| else: |
| # for mypy, scatter was imported two lines above |
| from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef] |
| |
| if self.type().dim() is None: |
| return _unimplemented("index_fill", "input rank not accesible") |
| self_dim = self.type().dim() |
| dim_value = _parse_arg(dim, "i") |
| unsqueezed_index = _unsqueeze_helper(g, index, [i for i in range(self_dim) if i != dim_value]) |
| expanded_index_shape = scatter(g, g.op("Shape", self), 0, |
| _unsqueeze_helper(g, dim, [0]), g.op("Shape", index)) |
| expanded_index = expand(g, unsqueezed_index, expanded_index_shape, None) |
| return expanded_index_shape, expanded_index |
| |
| # When using reshape helper (opset_version >= 14), if reshape has -1, |
| # allowzero cannot be set to 1 |
| def _reshape_helper(g, input, shape, allowzero=0): |
| shape = _maybe_get_const(shape, "is") |
| if not _is_value(shape): |
| shape = g.op("Constant", value_t=torch.LongTensor(shape)) |
| if _export_onnx_opset_version <= 13: |
| return g.op("Reshape", input, shape) |
| else: |
| warnings.warn("allowzero=0 by default. In order to honor zero value in shape use allowzero=1") |
| return g.op("Reshape", input, shape, allowzero_i=allowzero) |
| |
| def _batchnorm_helper(g, input, weight, bias, running_mean, running_var): |
| from torch.onnx.symbolic_opset9 import _var_mean |
| batch_size = _get_tensor_dim_size(input, 0) |
| channel_size = _get_tensor_dim_size(input, 1) |
| |
| if weight is None or _is_none(weight): |
| if channel_size is None: |
| raise RuntimeError("Unsupported: ONNX export of batch_norm for unknown " |
| "channel size.") |
| weight_value = torch.tensor([1.] * channel_size).type( |
| "torch." + input.type().scalarType() + "Tensor") |
| weight = g.op("Constant", value_t=weight_value) |
| if bias is None or _is_none(bias): |
| if channel_size is None: |
| raise RuntimeError("Unsupported: ONNX export of batch_norm for unknown " |
| "channel size.") |
| bias_value = torch.tensor([0.] * channel_size).type( |
| "torch." + input.type().scalarType() + "Tensor") |
| bias = g.op("Constant", value_t=bias_value) |
| # If track_running_stats is set to False batch statistics are instead used during evaluation time |
| if running_mean is None or _is_none(running_mean) or running_var is None or _is_none(running_var): |
| assert batch_size is not None and channel_size is not None |
| reshape_in = _reshape_helper(g, input, |
| g.op("Constant", value_t=torch.tensor([batch_size, channel_size, -1], |
| dtype=torch.int64))) |
| trans_in = g.op("Transpose", reshape_in, perm_i=[0, 2, 1]) |
| running_var, running_mean = _var_mean(g, trans_in, |
| g.op("Constant", value_t=torch.tensor([0, 1], dtype=torch.int64)), |
| False, False) |
| return weight, bias, running_mean, running_var |
| |
| def _avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override, name): |
| if divisor_override and divisor_override.node().kind() != "prim::Constant": |
| return _unimplemented(name, "divisor_override") |
| if not stride: |
| stride = kernel_size |
| padding = tuple(tuple_fn(padding)) |
| return padding |
| |
| |
| def check_training_mode(op_train_mode, op_name): |
| global _training_mode |
| op_train_mode = True if op_train_mode == 1 else False |
| if _training_mode is not None and op_train_mode != _training_mode: |
| op_mode = "training " if op_train_mode else "inference" |
| training_mode = "training " if _training_mode else "inference" |
| # setting the model mode could result in op_mode != _training_mode |
| # if the model is a FuncModule. In this case we warn the user of |
| # the state and export depending on op_mode |
| # This is to support use-cases of fixing certain layer weights |
| # in training. |
| warnings.warn("ONNX export mode is set to " + training_mode + |
| " mode, but operator " + op_name + " is set to " + |
| op_mode + " mode. The operators will be exported in " + |
| op_mode + ", as specified by the functional operator.") |
| |
| |
| def _flatten_helper(g, input, start_dim, end_dim, dim): |
| input_size = g.op("Shape", input) |
| slice1 = _slice_helper(g, input_size, axes=[0], starts=[0], ends=[start_dim]) |
| slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long))] |
| if end_dim < dim - 1: |
| slice3 = _slice_helper(g, input_size, axes=[0], starts=[end_dim + 1], ends=[dim]) |
| slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)), slice3] |
| |
| final_shape = g.op("Concat", *slices, axis_i=0) |
| from torch.onnx.symbolic_opset9 import _reshape_from_tensor |
| return _reshape_from_tensor(g, input, final_shape) |
| |
| def _is_split_static(split_size_or_sizes, _outputs): |
| if _outputs is None: |
| return False |
| if _is_value(split_size_or_sizes) and split_size_or_sizes.node().kind() != "onnx::Constant": |
| return False |
| return True |
| |
| def _optional_input_placeholder_tensor(g): |
| n = g.op("prim::Constant") |
| n.setType(OptionalType.ofTensor()) |
| return n |
| |
| def _handle_reduce_dim_none(g, self, op_name): |
| rank = _get_tensor_rank(self) |
| if rank is not None and any([_get_tensor_dim_size(self, i) == 0 for i in range(rank)]): |
| # If input tensor is empty, according to ONNX ReduceSum definition, |
| # set keepdims=1 so that the resulted tensor has the same rank as the input. |
| return g.op(op_name, self, keepdims_i=1) |
| return g.op(op_name, self, keepdims_i=0) |
| |
| def dequantize_helper(g, qtensor, qdtype=None): |
| tensor, scale, zero_point = _unpack_tuple(qtensor) |
| input_qdtype = cast_pytorch_to_onnx[tensor.type().scalarType()] |
| if qdtype is None: |
| if input_qdtype is not None: |
| qdtype = input_qdtype |
| else: |
| qdtype = torch.onnx.TensorProtoDataType.UINT8 |
| value = g.op("Cast", tensor, to_i=qdtype) |
| scale = g.op("Cast", scale, to_i=torch.onnx.TensorProtoDataType.FLOAT) |
| zero_point = g.op("Cast", zero_point, to_i=qdtype) |
| return g.op("DequantizeLinear", value, scale, zero_point), scale, zero_point |
| |
| def quantize_helper(g, tensor, scale, zero_point): |
| assert scale is not None |
| if scale.type().scalarType() != "Float": |
| scale = g.op("Cast", scale, to_i=torch.onnx.TensorProtoDataType.FLOAT) |
| |
| assert zero_point is not None |
| if zero_point.type().scalarType() not in ("Byte", "Char"): |
| zero_point = g.op("Cast", zero_point, to_i=torch.onnx.TensorProtoDataType.UINT8) |
| output = g.op("QuantizeLinear", tensor, scale, zero_point) |
| return g.op("prim::TupleConstruct", output, scale, zero_point) |
| |
| # --------------------------------------------------------------------- |
| # ONNX operator version |
| # --------------------------------------------------------------------- |
| |
| # READ ME BEFORE EDITING _default_onnx_opset_version: |
| # |
| # The variable below controls which ONNX operator set version we are |
| # targeting. THIS VARIABLE HAS SEMANTIC EFFECT! Say a breaking |
| # change occurred in version 8. As long as this variable < 8, you can |
| # export models targeting the old behavior. However, if you bump |
| # this variable to 8 or later, the breaking change will take into effect: |
| # you MUST adjust any symbolic affected by breaking changes. The ONNX |
| # spec publishes a *comprehensive* list of BC-breaking changes for every |
| # operator revision at: |
| # |
| # https://github.com/onnx/onnx/blob/master/docs/Changelog.md |
| # |
| # Please be sure to go through and check all of our implementations here before |
| # increasing this number. This includes symbolic definitions NOT in this |
| # file, so grep for "OpName" (with quotes) |
| # |
| # Besides, opset_version can be specified in the invocation of export() |
| # and export_to_pretty_string(), and _export_onnx_opset_version will be set |
| # and the symbolic functions should check it to determine the behavior |
| # of the exporter. |
| |
| |
| _default_onnx_opset_version = 9 |
| _onnx_main_opset = 15 |
| _onnx_stable_opsets = [7, 8, 9, 10, 11, 12, 13, 14] |
| _export_onnx_opset_version = _default_onnx_opset_version |
| _constant_folding_opset_versions = list(range(9, _onnx_main_opset + 1)) |
| |
| |
| def _set_opset_version(opset_version): |
| global _export_onnx_opset_version |
| if opset_version == _default_onnx_opset_version: |
| _export_onnx_opset_version = opset_version |
| return |
| if opset_version in _onnx_stable_opsets + [_onnx_main_opset]: |
| _export_onnx_opset_version = opset_version |
| return |
| raise ValueError("Unsupported ONNX opset version: " + str(opset_version)) |
| |
| _operator_export_type = None |
| def _set_operator_export_type(operator_export_type): |
| global _operator_export_type |
| _operator_export_type = operator_export_type |
| |
| _training_mode = None |
| def _set_training_mode(training_mode): |
| global _training_mode |
| _training_mode = training_mode |
| |
| _onnx_shape_inference = False |
| # This function is for debug use only. |
| # onnx_shape_inference = True by default. |
| def _set_onnx_shape_inference(onnx_shape_inference): |
| global _onnx_shape_inference |
| _onnx_shape_inference = onnx_shape_inference |
| |
| |
| # Metaprogram symbolics for each ATen native specialized cast operator. |
| # For e.g. we specify a function named `_cast_uint8_t` that instantiates an |
| # ONNX cast node with `to` attribute "UINT8" |
| # |
| # TODO: remove these once we support Type's in the JIT IR and we can once again |
| # use the unified toType operator |
| cast_pytorch_to_onnx = { |
| "Byte": torch.onnx.TensorProtoDataType.UINT8, |
| "Char": torch.onnx.TensorProtoDataType.INT8, |
| "Double": torch.onnx.TensorProtoDataType.DOUBLE, |
| "Float": torch.onnx.TensorProtoDataType.FLOAT, |
| "Half": torch.onnx.TensorProtoDataType.FLOAT16, |
| "Int": torch.onnx.TensorProtoDataType.INT32, |
| "Long": torch.onnx.TensorProtoDataType.INT64, |
| "Short": torch.onnx.TensorProtoDataType.INT16, |
| "Bool": torch.onnx.TensorProtoDataType.BOOL, |
| "ComplexFloat": torch.onnx.TensorProtoDataType.COMPLEX64, |
| "ComplexDouble": torch.onnx.TensorProtoDataType.COMPLEX128, |
| "BFloat16": torch.onnx.TensorProtoDataType.BFLOAT16, |
| "Undefined": torch.onnx.TensorProtoDataType.UNDEFINED, |
| } |
| |
| scalar_name_to_pytorch = { |
| "uint8_t": "Byte", |
| "int8_t": "Char", |
| "double": "Double", |
| "float": "Float", |
| "half": "Half", |
| "int": "Int", |
| "int64_t": "Long", |
| "int16_t": "Short", |
| "bool": "Bool", |
| "complex64": "ComplexFloat", |
| "complex128": "ComplexDouble", |
| "qint8": "QInt8", |
| "quint8": "QUInt8", |
| "qint32": "QInt32", |
| "bfloat16": "BFloat16", |
| } |
| |
| |
| |
| class ScalarType(enum.IntEnum): |
| """A human-readable name for a key into scalar_type_to_pytorch_type.""" |
| UINT8 = 0 |
| INT8 = enum.auto() |
| SHORT = enum.auto() |
| INT = enum.auto() |
| INT64 = enum.auto() |
| HALF = enum.auto() |
| FLOAT = enum.auto() |
| DOUBLE = enum.auto() |
| COMPLEX32 = enum.auto() |
| COMPLEX64 = enum.auto() |
| COMPLEX128 = enum.auto() |
| BOOL = enum.auto() |
| QINT8 = enum.auto() |
| QUINT8 = enum.auto() |
| QINT32 = enum.auto() |
| BFLOAT16 = enum.auto() |
| |
| |
| # This indicates each scalar type's corresponding |
| # torch type. Related source: |
| # https://github.com/pytorch/pytorch/blob/344defc9733a45fee8d0c4d3f5530f631e823196/c10/core/ScalarType.h |
| scalar_type_to_pytorch_type = [ |
| torch.uint8, # 0 |
| torch.int8, # 1 |
| torch.short, # 2 |
| torch.int, # 3 |
| torch.int64, # 4 |
| torch.half, # 5 |
| torch.float, # 6 |
| torch.double, # 7 |
| torch.complex32, # 8 |
| torch.complex64, # 9 |
| torch.complex128, # 10 |
| torch.bool, # 11 |
| torch.qint8, # 12 |
| torch.quint8, # 13 |
| torch.qint32, # 14 |
| torch.bfloat16, # 15 |
| ] |
| |
| def _cast_func_template(to_i, g, input, non_blocking): |
| return g.op("Cast", input, to_i=to_i) |
| |
| |
| scalar_type_to_onnx = [ |
| cast_pytorch_to_onnx["Byte"], # 0 |
| cast_pytorch_to_onnx["Char"], # 1 |
| cast_pytorch_to_onnx["Short"], # 2 |
| cast_pytorch_to_onnx["Int"], # 3 |
| cast_pytorch_to_onnx["Long"], # 4 |
| cast_pytorch_to_onnx["Half"], # 5 |
| cast_pytorch_to_onnx["Float"], # 6 |
| cast_pytorch_to_onnx["Double"], # 7 |
| cast_pytorch_to_onnx["Undefined"], # 8 |
| cast_pytorch_to_onnx["ComplexFloat"], # 9 |
| cast_pytorch_to_onnx["ComplexDouble"], # 10 |
| cast_pytorch_to_onnx["Bool"], # 11 |
| cast_pytorch_to_onnx["Char"], # 12 |
| cast_pytorch_to_onnx["Byte"], # 13 |
| cast_pytorch_to_onnx["Int"], # 14 |
| cast_pytorch_to_onnx["BFloat16"], # 15 |
| ] |
| |
| # Global set to store the list of quantized operators in the network. |
| # This is currently only used in the conversion of quantized ops from PT -> C2 via ONNX. |
| _quantized_ops: Set[int] = set() |