|  | /** | 
|  | * Copyright (c) 2016-present, Facebook, Inc. | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | /* SampleAs by Kaiming He for Mask R-CNN | 
|  | X.dim32(0) = L.dim32(0) | 
|  | Y's output samples are the samples of X for which L > 0. | 
|  | */ | 
|  | #include <cfloat> | 
|  |  | 
|  | #include "caffe2/core/context_gpu.h" | 
|  | #include "modules/detectron/sample_as_op.h" | 
|  |  | 
|  | #include <stdio.h> | 
|  |  | 
|  | namespace caffe2 { | 
|  |  | 
|  | template <> | 
|  | bool SampleAsOp<float, CUDAContext>::RunOnDevice() { | 
|  | auto& X = Input(0); // Input data to be sliced | 
|  | auto& L = Input(1); // Target data that provide the identity | 
|  |  | 
|  | CAFFE_ENFORCE( | 
|  | X.dim32(0) == L.dim32(0), | 
|  | "X.dim32(0) must be equal to L.dim32(0)", | 
|  | "(", | 
|  | X.dim32(0), | 
|  | " vs. ", | 
|  | L.dim32(0), | 
|  | ")"); | 
|  |  | 
|  | // copy L to CPU: | 
|  | std::vector<int> labels(L.dim32(0)); | 
|  | context_.CopyBytes<CUDAContext, CPUContext>( | 
|  | L.dim32(0) * sizeof(int), L.data<int>(), &labels[0]); | 
|  | // Make sure that the copy is finished | 
|  | context_.FinishDeviceComputation(); | 
|  |  | 
|  | int count = 0; | 
|  | for (int i = 0; i < L.dim32(0); i++) { | 
|  | if (labels[i] > 0) { | 
|  | count++; | 
|  | } | 
|  | } | 
|  | assert(count > 0); | 
|  |  | 
|  | // resize Y | 
|  | vector<int64_t> out_shape(X.sizes().vec()); | 
|  | out_shape[0] = count; | 
|  | auto* Y = Output(0, out_shape, at::dtype<float>()); // Sliced data (Y.dim32(0) = num of (L > 0)) | 
|  |  | 
|  | const int len = X.size() / X.dim32(0); | 
|  |  | 
|  | float* output = Y->mutable_data<float>(); | 
|  | for (int i = 0; i < L.dim32(0); i++) { | 
|  | if (labels[i] > 0) { | 
|  | context_.CopyBytes<CUDAContext, CUDAContext>( | 
|  | len * sizeof(float), X.data<float>() + i * len, output); | 
|  | output += len; | 
|  | } // if | 
|  | } // i | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <> | 
|  | bool SampleAsGradientOp<float, CUDAContext>::RunOnDevice() { | 
|  | auto& X = Input(0); | 
|  | auto& L = Input(1); | 
|  | auto& dY = Input(2); | 
|  |  | 
|  |  | 
|  | auto* dX = Output(0, X.sizes(), at::dtype<float>()); | 
|  |  | 
|  | // copy L to CPU: | 
|  | std::vector<int> labels(L.dim32(0)); | 
|  | context_.CopyBytes<CUDAContext, CPUContext>( | 
|  | L.dim32(0) * sizeof(int), L.data<int>(), &labels[0]); | 
|  | // Make sure that the copy is finished | 
|  | context_.FinishDeviceComputation(); | 
|  |  | 
|  | // zero-out dX | 
|  | math::Set<float, CUDAContext>( | 
|  | dX->size(), 0.f, dX->mutable_data<float>(), &context_); | 
|  |  | 
|  | const int len = X.size() / X.dim32(0); | 
|  |  | 
|  | const float* input = dY.data<float>(); | 
|  | for (int i = 0; i < L.dim32(0); i++) { | 
|  | if (labels[i] > 0) { | 
|  | context_.CopyBytes<CUDAContext, CUDAContext>( | 
|  | len * sizeof(float), input, dX->mutable_data<float>() + i * len); | 
|  | input += len; | 
|  | } // if | 
|  | } // i | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | REGISTER_CUDA_OPERATOR(SampleAs, SampleAsOp<float, CUDAContext>); | 
|  | REGISTER_CUDA_OPERATOR( | 
|  | SampleAsGradient, | 
|  | SampleAsGradientOp<float, CUDAContext>); | 
|  | } // namespace caffe2 |