blob: a9683af2541913b1a775185bd3fb765a85fe880d [file] [log] [blame]
# Owner(s): ["module: dynamo"]
import unittest
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch.testing._internal.common_utils import IS_FBCODE
class MutationExportTests(torch._dynamo.test_case.TestCase):
def check_failure_on_export(self, mod, *args):
with self.assertRaises(AssertionError):
torch._dynamo.export(mod)(*args)
def check_same_with_export(self, mod, arg):
real_result = mod(arg)
graph, _ = torch._dynamo.export(mod)(arg)
result = graph(arg)
self.assertEqual(result, real_result)
def test_module_attribute_mutation_violation_positive_1(self):
# Mutating attribute with a Tensor type
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.randn(3, 2)
def forward(self, x):
self.a = self.a.to(torch.float64)
return x.sum() + self.a.sum()
self.check_failure_on_export(Foo(), torch.randn(3, 2))
def test_module_attribute_mutation_violation_negative_1(self):
# Mutating attribute with a Tensor type inside __init__ but
# not in forward()
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.randn(3, 2)
def forward(self, x):
return x.sum() + self.a.to(torch.float64).sum()
self.check_same_with_export(Foo(), torch.randn(3, 2))
def test_module_attribute_mutation_violation_negative_2(self):
# Mutating attribute with a Tensor type inside __init__ twice
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.randn(3, 2)
self.a = self.a.to(torch.float64)
def forward(self, x):
return x.sum() + self.a.sum()
self.check_same_with_export(Foo(), torch.randn(3, 2))
def test_module_attribute_mutation_violation_negative_3(self):
# Mutating local variable inside forward()
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.randn(3, 2)
def forward(self, x):
b = 1
b = b * 5
return x.sum() + self.a.sum() + b
self.check_same_with_export(Foo(), torch.randn(3, 2))
@unittest.skipIf(IS_FBCODE, "Broken in fbcode")
def test_module_attribute_mutation_violation_negative_4(self):
# Mutating attribute with a Tensor type
# But not exporting but using eager mode as well as dynamo optimize mode
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.randn(3, 2)
def forward(self, x):
self.a = self.a.to(torch.float64)
return x.sum() + self.a.sum()
mod = Foo()
arg = torch.randn(3, 2)
real_result = mod(arg)
opt_mod = torch._dynamo.optimize("eager", nopython=True)(mod)
self.assertEqual(opt_mod(arg), real_result)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()