blob: 1bc579f82e867b3f4200fbfc05878037f5d9ff2c [file] [log] [blame]
import torch
import torch.cuda
import torch.jit
import numpy as np
from hypothesis import given
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.quantization import FakeQuantize
from torch.quantization import default_observer, default_per_channel_weight_observer
import io
import unittest
# Reference method for fake quantize
def _fake_quantize_per_tensor_affine_reference(X, scale, zero_point, quant_min, quant_max):
res = (torch.clamp(torch.round(X * (1.0 / scale) + zero_point), quant_min, quant_max) - zero_point) * scale
return res
# Reference method for the gradient of the fake quantize operator
def _fake_quantize_per_tensor_affine_grad_reference(dY, X, scale, zero_point, quant_min, quant_max):
Xq = torch.round(X * (1.0 / scale) + zero_point)
mask = (Xq >= quant_min) * (Xq <= quant_max)
res = torch.zeros_like(dY)
res[mask] = dY[mask]
return res
# Helper function used to simulate per-channel fake-quant against any axis
def _permute_to_axis_zero(X, axis):
new_axis_list = list(range(X.dim()))
new_axis_list[axis] = 0
new_axis_list[0] = axis
y = X.permute(tuple(new_axis_list))
return y, new_axis_list
# Reference method for fake quantize
def _fake_quantize_per_channel_affine_reference(X, per_channel_scale, per_channel_zero_point, axis, quant_min, quant_max):
X, permute_axis_list = _permute_to_axis_zero(X, axis)
res = torch.zeros_like(X)
for i in range(X.size()[0]):
res[i] = (torch.clamp(torch.round(X[i] * (1.0 / per_channel_scale[i]) +
per_channel_zero_point[i]), quant_min, quant_max) - per_channel_zero_point[i]) * per_channel_scale[i]
out = res.permute(tuple(permute_axis_list))
return out
# Reference method for the gradient of the fake quantize operator
def _fake_quantize_per_channel_affine_grad_reference(dY, X, per_channel_scale, per_channel_zero_point, axis, quant_min, quant_max):
X, permute_axis_list = _permute_to_axis_zero(X, axis)
Xq = torch.zeros_like(X)
for i in range(X.size()[0]):
Xq[i] = torch.round(X[i] * (1.0 / per_channel_scale[i]) + per_channel_zero_point[i])
Xq = Xq.permute(tuple(permute_axis_list))
mask = (Xq >= quant_min) * (Xq <= quant_max)
res = torch.zeros_like(dY)
res[mask] = dY[mask]
return res
def to_tensor(X, device):
return torch.tensor(X).to(device=torch.device(device), dtype=torch.float32)
NP_RANDOM_SEED = 19
tolerance = 1e-6
class TestFakeQuantizePerTensor(TestCase):
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.tensor(shapes=hu.array_shapes(1, 5,),
qparams=hu.qparams(dtypes=torch.quint8)))
def test_forward_per_tensor(self, device, X):
r"""Tests the forward path of the FakeQuantizePerTensorAffine op.
"""
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
Y = _fake_quantize_per_tensor_affine_reference(X.cpu(), scale, zero_point, quant_min, quant_max)
Y_prime = torch.fake_quantize_per_tensor_affine(
X, scale, zero_point, quant_min, quant_max)
np.testing.assert_allclose(Y, Y_prime.cpu(), rtol=tolerance, atol=tolerance)
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.tensor(shapes=hu.array_shapes(1, 5,),
qparams=hu.qparams(dtypes=torch.quint8)))
@unittest.skip("temporarily disable the test")
def test_backward_per_tensor(self, device, X):
r"""Tests the backward method.
"""
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
X.requires_grad_()
Y = _fake_quantize_per_tensor_affine_reference(X.cpu(), scale, zero_point, quant_min, quant_max)
Y_prime = torch.fake_quantize_per_tensor_affine(
X, scale, zero_point, quant_min, quant_max)
dout = torch.rand(X.shape, dtype=torch.float).to(device)
dX = _fake_quantize_per_tensor_affine_grad_reference(
dout, X, scale, zero_point, quant_min, quant_max)
Y_prime.backward(dout)
np.testing.assert_allclose(dX.cpu(), X.grad.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.tensor(shapes=hu.array_shapes(1, 5,),
qparams=hu.qparams(dtypes=torch.quint8)))
# https://github.com/pytorch/pytorch/issues/30604
@unittest.skip("temporarily disable the test")
def test_numerical_consistency_per_tensor(self, device, X):
r"""Comparing numerical consistency between CPU quantize/dequantize op and the CPU fake quantize op
"""
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
# quantize_per_tensor and dequantize are only implemented in CPU
Y = torch.dequantize(torch.quantize_per_tensor(X.cpu(), scale, zero_point, torch_type))
Y_prime = torch.fake_quantize_per_tensor_affine(
X, scale, zero_point, quant_min, quant_max)
np.testing.assert_allclose(Y, Y_prime.cpu(), rtol=tolerance, atol=tolerance)
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.tensor(shapes=hu.array_shapes(1, 5,),
qparams=hu.qparams(dtypes=[torch.quint8])),
)
def test_fq_module(self, device, X):
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
X.requires_grad_()
fq_module = torch.quantization.default_fake_quant().to(device)
Y_prime = fq_module(X)
assert fq_module.scale is not None
assert fq_module.zero_point is not None
Y = _fake_quantize_per_tensor_affine_reference(X, fq_module.scale, fq_module.zero_point, quant_min, quant_max)
np.testing.assert_allclose(Y.cpu().detach().numpy(), Y_prime.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
# Test backward
dout = torch.rand(X.shape, dtype=torch.float, device=device)
Y_prime.backward(dout)
dX = _fake_quantize_per_tensor_affine_grad_reference(dout, X, fq_module.scale, fq_module.zero_point, quant_min, quant_max)
np.testing.assert_allclose(dX.cpu().numpy(), X.grad.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
def test_fq_serializable(self):
observer = default_observer
quant_min = 0
quant_max = 255
fq_module = FakeQuantize(observer, quant_min, quant_max)
X = torch.tensor([-5, -3.5, -2, 0, 3, 5, 7], dtype=torch.float32)
y_ref = fq_module(X)
state_dict = fq_module.state_dict()
self.assertEqual(state_dict['scale'], 0.094488)
self.assertEqual(state_dict['zero_point'], 53)
b = io.BytesIO()
torch.save(state_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
loaded_fq_module = FakeQuantize(observer, quant_min, quant_max)
loaded_fq_module.load_state_dict(loaded_dict)
for key in state_dict:
self.assertEqual(state_dict[key], loaded_fq_module.state_dict()[key])
self.assertEqual(loaded_fq_module.calculate_qparams(), fq_module.calculate_qparams())
def test_fake_quant_control(self):
torch.manual_seed(42)
X = torch.rand(20, 10, dtype=torch.float32)
fq_module = torch.quantization.default_fake_quant()
# Output of fake quant is not identical to input
Y = fq_module(X)
self.assertNotEqual(Y, X)
torch.quantization.disable_fake_quant(fq_module)
X = torch.rand(20, 10, dtype=torch.float32)
Y = fq_module(X)
# Fake quant is disabled,output is identical to input
self.assertEqual(Y, X)
scale = fq_module.scale
zero_point = fq_module.zero_point
torch.quantization.disable_observer(fq_module)
torch.quantization.enable_fake_quant(fq_module)
X = 10.0 * torch.rand(20, 10, dtype=torch.float32) - 5.0
Y = fq_module(X)
self.assertNotEqual(Y, X)
# Observer is disabled, scale and zero-point do not change
self.assertEqual(fq_module.scale, scale)
self.assertEqual(fq_module.zero_point, zero_point)
torch.quantization.enable_observer(fq_module)
Y = fq_module(X)
self.assertNotEqual(Y, X)
# Observer is enabled, scale and zero-point are different
self.assertNotEqual(fq_module.scale, scale)
self.assertNotEqual(fq_module.zero_point, zero_point)
class TestFakeQuantizePerChannel(TestCase):
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.per_channel_tensor(shapes=hu.array_shapes(1, 5,),
qparams=hu.qparams(dtypes=torch.quint8)))
def test_forward_per_channel(self, device, X):
r"""Tests the forward path of the FakeQuantizePerTensorAffine op.
"""
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, axis, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
scale = to_tensor(scale, device)
zero_point = torch.tensor(zero_point).to(dtype=torch.int64, device=device)
Y = _fake_quantize_per_channel_affine_reference(X.cpu(), scale.cpu(), zero_point.cpu(), axis, quant_min, quant_max)
Y_prime = torch.fake_quantize_per_channel_affine(
X, scale, zero_point, axis, quant_min, quant_max)
np.testing.assert_allclose(Y, Y_prime.cpu(), rtol=tolerance, atol=tolerance)
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.per_channel_tensor(shapes=hu.array_shapes(1, 5,),
qparams=hu.qparams(dtypes=torch.quint8)))
def test_backward_per_channel(self, device, X):
r"""Tests the backward method.
"""
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, axis, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
scale = to_tensor(scale, device)
zero_point = torch.tensor(zero_point).to(dtype=torch.int64, device=device)
X.requires_grad_()
Y_prime = torch.fake_quantize_per_channel_affine(
X, scale, zero_point, axis, quant_min, quant_max)
dout = torch.rand(X.shape, dtype=torch.float).to(device)
dX = _fake_quantize_per_channel_affine_grad_reference(
dout, X, scale, zero_point, axis, quant_min, quant_max)
Y_prime.backward(dout)
np.testing.assert_allclose(dX.cpu().detach().numpy(), X.grad.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.per_channel_tensor(shapes=hu.array_shapes(1, 5,),
qparams=hu.qparams(dtypes=torch.quint8)))
@unittest.skip("temporarily disable the test")
def test_numerical_consistency_per_channel(self, device, X):
r"""Comparing numerical consistency between CPU quantize/dequantize op and the CPU fake quantize op
"""
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, axis, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
scale = to_tensor(scale, device)
zero_point = torch.tensor(zero_point).to(dtype=torch.int64, device=device)
# quantize_linear and dequantize are only implemented in CPU
Y = torch.dequantize(torch.quantize_per_channel(X.cpu(), scale.cpu(), zero_point.cpu(), axis, torch_type))
Y_prime = torch.fake_quantize_per_channel_affine(
X, scale, zero_point, axis, quant_min, quant_max)
np.testing.assert_allclose(Y, Y_prime.cpu(), rtol=tolerance, atol=tolerance)
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.per_channel_tensor(shapes=hu.array_shapes(2, 5,),
qparams=hu.qparams(dtypes=torch.qint8)))
def test_fq_module(self, device, X):
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, axis, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
X.requires_grad_()
fq_module = FakeQuantize(default_per_channel_weight_observer, quant_min, quant_max, ch_axis=axis).to(device)
Y_prime = fq_module(X)
assert fq_module.scale is not None
assert fq_module.zero_point is not None
Y = _fake_quantize_per_channel_affine_reference(X, fq_module.scale,
fq_module.zero_point, axis, quant_min, quant_max)
np.testing.assert_allclose(Y.cpu().detach().numpy(), Y_prime.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
# Test backward
dout = torch.rand(X.shape, dtype=torch.float, device=device)
Y_prime.backward(dout)
dX = _fake_quantize_per_channel_affine_grad_reference(dout, X, fq_module.scale,
fq_module.zero_point, axis, quant_min, quant_max)
np.testing.assert_allclose(dX.cpu().numpy(), X.grad.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
def test_fq_serializable(self):
observer = default_per_channel_weight_observer
quant_min = -128
quant_max = 127
fq_module = FakeQuantize(observer, quant_min, quant_max)
X = torch.tensor([[-5, -3.5, -2, 0, 3, 5, 7], [1, 3, 2, 5, 6.5, 8, 10]], dtype=torch.float32)
y_ref = fq_module(X)
state_dict = fq_module.state_dict()
self.assertEqual(state_dict['scale'], [0.054902, 0.078431])
self.assertEqual(state_dict['zero_point'], [0, 0])
b = io.BytesIO()
torch.save(state_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
for key in state_dict:
self.assertEqual(state_dict[key], loaded_dict[key])
if __name__ == '__main__':
run_tests()