blob: b6000aadf50dfab510e47dd3d9ee81642a2481fa [file] [log] [blame]
import warnings
import unittest
from itertools import product
import random
import torch
from torch.testing._internal.common_utils import \
(TestCase, run_tests, do_test_empty_full, TEST_NUMPY, suppress_warnings,
IS_WINDOWS, torch_to_numpy_dtype_dict, slowTest)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, deviceCountAtLeast, onlyOnCPUAndCUDA,
onlyCPU, skipCUDAIfNotRocm, largeCUDATensorTest, precisionOverride, dtypes,
onlyCUDA, skipCPUIf, dtypesIfCUDA)
if TEST_NUMPY:
import numpy as np
# Test suite for tensor creation ops
#
# Includes creation functions like torch.eye, random creation functions like
# torch.rand, and *like functions like torch.ones_like.
# DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in
# test_torch.py) OR numpy interop (which is also still tested in test_torch.py)
#
# See https://pytorch.org/docs/master/torch.html#creation-ops
class TestTensorCreation(TestCase):
exact_dtype = True
# TODO: this test should be updated
@onlyOnCPUAndCUDA
def test_empty_full(self, device):
torch_device = torch.device(device)
device_type = torch_device.type
if device_type == 'cpu':
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch_device)
if device_type == 'cuda':
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, None)
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch_device)
# TODO: this test should be updated
@suppress_warnings
@onlyOnCPUAndCUDA
@deviceCountAtLeast(1)
def test_tensor_device(self, devices):
device_type = torch.device(devices[0]).type
if device_type == 'cpu':
self.assertEqual('cpu', torch.tensor(5).device.type)
self.assertEqual('cpu',
torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type)
self.assertEqual('cpu',
torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type)
self.assertEqual('cpu',
torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type)
if TEST_NUMPY:
self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type)
if device_type == 'cuda':
self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device))
self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device))
self.assertEqual('cuda:0',
str(torch.tensor(5, dtype=torch.int64, device=0).device))
self.assertEqual('cuda:0',
str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device))
self.assertEqual('cuda:0',
str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device))
if TEST_NUMPY:
self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device))
for device in devices:
with torch.cuda.device(device):
device_string = 'cuda:' + str(torch.cuda.current_device())
self.assertEqual(device_string,
str(torch.tensor(5, dtype=torch.int64, device='cuda').device))
with self.assertRaises(RuntimeError):
torch.tensor(5).cuda('cpu')
with self.assertRaises(RuntimeError):
torch.tensor(5).cuda('cpu:0')
if len(devices) > 1:
self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device))
self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device))
self.assertEqual('cuda:1',
str(torch.tensor(5, dtype=torch.int64, device=1).device))
self.assertEqual('cuda:1',
str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device))
self.assertEqual('cuda:1',
str(torch.tensor(torch.ones((2, 3), dtype=torch.float32),
device='cuda:1').device))
if TEST_NUMPY:
self.assertEqual('cuda:1',
str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device))
# TODO: this test should be updated
@onlyOnCPUAndCUDA
def test_as_strided_neg(self, device):
error = r'as_strided: Negative strides are not supported at the ' \
r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]'
with self.assertRaisesRegex(RuntimeError, error):
torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1))
with self.assertRaisesRegex(RuntimeError, error):
torch.as_strided(torch.ones(14, device=device), (2,), (-11,))
# TODO: this test should be updated
def test_zeros(self, device):
res1 = torch.zeros(100, 100, device=device)
res2 = torch.tensor((), device=device)
torch.zeros(100, 100, device=device, out=res2)
self.assertEqual(res1, res2)
boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool)
expected = torch.tensor([[False, False], [False, False]],
device=device, dtype=torch.bool)
self.assertEqual(boolTensor, expected)
halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half)
expected = torch.tensor([[0.]], device=device, dtype=torch.float16)
self.assertEqual(halfTensor, expected)
bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16)
expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16)
self.assertEqual(bfloat16Tensor, expected)
complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64)
expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64)
self.assertEqual(complexTensor, expected)
# TODO: this test should be updated
def test_zeros_out(self, device):
shape = (3, 4)
out = torch.zeros(shape, device=device)
torch.zeros(shape, device=device, out=out)
# change the dtype, layout, device
with self.assertRaises(RuntimeError):
torch.zeros(shape, device=device, dtype=torch.int64, out=out)
with self.assertRaises(RuntimeError):
torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out)
# leave them the same
self.assertEqual(torch.zeros(shape, device=device),
torch.zeros(shape, device=device, dtype=out.dtype, out=out))
self.assertEqual(torch.zeros(shape, device=device),
torch.zeros(shape, device=device, layout=torch.strided, out=out))
self.assertEqual(torch.zeros(shape, device=device),
torch.zeros(shape, device=device, out=out))
# TODO: this test should be updated
def test_ones(self, device):
res1 = torch.ones(100, 100, device=device)
res2 = torch.tensor((), device=device)
torch.ones(100, 100, device=device, out=res2)
self.assertEqual(res1, res2)
# test boolean tensor
res1 = torch.ones(1, 2, device=device, dtype=torch.bool)
expected = torch.tensor([[True, True]], device=device, dtype=torch.bool)
self.assertEqual(res1, expected)
# TODO: this test should be updated
@onlyCPU
def test_constructor_dtypes(self, device):
default_type = torch.Tensor().type()
self.assertIs(torch.Tensor().dtype, torch.get_default_dtype())
self.assertIs(torch.uint8, torch.ByteTensor.dtype)
self.assertIs(torch.float32, torch.FloatTensor.dtype)
self.assertIs(torch.float64, torch.DoubleTensor.dtype)
torch.set_default_tensor_type('torch.FloatTensor')
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
torch.set_default_dtype(torch.float64)
self.assertIs(torch.float64, torch.get_default_dtype())
self.assertIs(torch.DoubleStorage, torch.Storage)
torch.set_default_tensor_type(torch.FloatTensor)
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.FloatTensor)
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype)
self.assertIs(torch.cuda.FloatStorage, torch.Storage)
torch.set_default_dtype(torch.float64)
self.assertIs(torch.float64, torch.get_default_dtype())
self.assertIs(torch.cuda.DoubleStorage, torch.Storage)
# don't support integral or sparse default types.
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor'))
self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64))
# don't allow passing dtype to set_default_tensor_type
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32))
torch.set_default_tensor_type(default_type)
# TODO: this test should be updated
@onlyCPU
def test_constructor_device_legacy(self, device):
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda'))
x = torch.randn((3,), device='cpu')
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda'))
if torch.cuda.is_available():
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu'))
default_type = torch.Tensor().type()
torch.set_default_tensor_type(torch.cuda.FloatTensor)
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu'))
torch.set_default_tensor_type(torch.cuda.FloatTensor)
torch.set_default_tensor_type(default_type)
x = torch.randn((3,), device='cuda')
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu'))
# TODO: this test should be updated
@suppress_warnings
@onlyCPU
def test_tensor_factory(self, device):
# TODO: This test probably doesn't make too much sense now that
# torch.tensor has been established for a while; it makes more
# sense to test the legacy behavior in terms of the new behavior
expected = torch.Tensor([1, 1])
# test data
res1 = torch.tensor([1, 1])
self.assertEqual(res1, expected, exact_dtype=False)
res1 = torch.tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected, exact_dtype=False)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = torch.tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = torch.tensor(expected, dtype=torch.int)
self.assertEqual(res1, expected, exact_dtype=False)
self.assertIs(torch.int, res1.dtype)
# test copy with numpy
if TEST_NUMPY:
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
a = np.array([5.]).astype(dtype)
res1 = torch.tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
# test boolean tensor
a = torch.tensor([True, True, False, True, True], dtype=torch.bool)
b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool)
self.assertEqual(a, b)
c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool)
self.assertEqual(a, c)
d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool)
e = torch.tensor((True, False, True, True, True), dtype=torch.bool)
self.assertEqual(e, d)
f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool)
self.assertEqual(e, f)
int64_max = torch.iinfo(torch.int64).max
int64_min = torch.iinfo(torch.int64).min
float64_max = torch.finfo(torch.float64).max
float64_min = torch.finfo(torch.float64).min
g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool)
self.assertEqual(e, g_1)
g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool)
self.assertEqual(e, g_2)
g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool)
self.assertEqual(e, g_3)
h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool)
i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool)
self.assertEqual(h, i)
j = torch.tensor((True, True, True, True), dtype=torch.bool)
k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool)
self.assertEqual(j, k)
# TODO: this test should be updated
@suppress_warnings
@onlyCPU
def test_tensor_factory_copy_var(self, device):
def check_copy(copy, is_leaf, requires_grad, data_ptr=None):
if data_ptr is None:
data_ptr = copy.data_ptr
self.assertEqual(copy, source, exact_dtype=False)
self.assertTrue(copy.is_leaf == is_leaf)
self.assertTrue(copy.requires_grad == requires_grad)
self.assertTrue(copy.data_ptr == data_ptr)
source = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
# test torch.tensor()
check_copy(torch.tensor(source), True, False)
check_copy(torch.tensor(source, requires_grad=False), True, False)
check_copy(torch.tensor(source, requires_grad=True), True, True)
# test tensor.new_tensor()
copy = torch.randn(1)
check_copy(copy.new_tensor(source), True, False)
check_copy(copy.new_tensor(source, requires_grad=False), True, False)
check_copy(copy.new_tensor(source, requires_grad=True), True, True)
# test torch.as_tensor()
check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy
check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph
# TODO: this test should be updated
@onlyCPU
def test_tensor_factory_type_inference(self, device):
def test_inference(default_dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(default_dtype)
default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128
self.assertIs(default_dtype, torch.tensor(()).dtype)
self.assertIs(default_dtype, torch.tensor(5.).dtype)
self.assertIs(torch.int64, torch.tensor(5).dtype)
self.assertIs(torch.bool, torch.tensor(True).dtype)
self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype)
self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype)
self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype)
self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype)
if TEST_NUMPY:
self.assertIs(torch.float64, torch.tensor(np.array(())).dtype)
self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype)
if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows)
self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype)
else:
self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype)
self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype)
self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype)
self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype)
torch.set_default_dtype(saved_dtype)
test_inference(torch.float64)
test_inference(torch.float32)
# TODO: this test should be updated
@suppress_warnings
@onlyCPU
def test_new_tensor(self, device):
expected = torch.autograd.Variable(torch.ByteTensor([1, 1]))
# test data
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1, expected)
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected, exact_dtype=False)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = expected.new_tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertEqual(res2, expected, exact_dtype=False)
self.assertIs(torch.int, res2.dtype)
# test copy with numpy
if TEST_NUMPY:
a = np.array([5.])
res1 = torch.tensor(a)
res1 = res1.new_tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
if torch.cuda.device_count() >= 2:
expected = expected.cuda(1)
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
res2 = expected.new_tensor(expected)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int, device=0)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), 0)
res1 = expected.new_tensor(1)
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor(1, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
# TODO: this test should be updated
@onlyCPU
def test_as_tensor(self, device):
# from python data
x = [[0, 1], [2, 3]]
self.assertEqual(torch.tensor(x), torch.as_tensor(x))
self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32))
# python data with heterogeneous types
z = [0, 'torch']
with self.assertRaisesRegex(TypeError, "invalid data type"):
torch.tensor(z)
torch.as_tensor(z)
# python data with self-referential lists
z = [0]
z += [z]
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
torch.tensor(z)
torch.as_tensor(z)
z = [[1, 2], z]
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
torch.tensor(z)
torch.as_tensor(z)
# from tensor (doesn't copy unless type is different)
y = torch.tensor(x)
self.assertIs(y, torch.as_tensor(y))
self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32))
if torch.cuda.is_available():
self.assertIsNot(y, torch.as_tensor(y, device='cuda'))
y_cuda = y.to('cuda')
self.assertIs(y_cuda, torch.as_tensor(y_cuda))
self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda'))
if TEST_NUMPY:
# doesn't copy
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
n = np.random.rand(5, 6).astype(dtype)
n_astensor = torch.as_tensor(n)
self.assertEqual(torch.tensor(n), n_astensor)
n_astensor[0][0] = 25.7
self.assertEqual(torch.tensor(n), n_astensor)
# changing dtype causes copy
n = np.random.rand(5, 6).astype(np.float32)
n_astensor = torch.as_tensor(n, dtype=torch.float64)
self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
n_astensor[0][1] = 250.8
self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
# changing device causes copy
if torch.cuda.is_available():
n = np.random.randn(5, 6)
n_astensor = torch.as_tensor(n, device='cuda')
self.assertEqual(torch.tensor(n, device='cuda'), n_astensor)
n_astensor[0][2] = 250.9
self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor)
# TODO: this test should be updated
@suppress_warnings
def test_range(self, device):
res1 = torch.range(0, 1, device=device)
res2 = torch.tensor((), device=device)
torch.range(0, 1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Check range for non-contiguous tensors.
x = torch.zeros(2, 3, device=device)
torch.range(0, 3, device=device, out=x.narrow(1, 1, 2))
res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=torch.float32)
self.assertEqual(x, res2, atol=1e-16, rtol=0)
# Check negative
res1 = torch.tensor((1, 0), device=device, dtype=torch.float32)
res2 = torch.tensor((), device=device)
torch.range(1, 0, -1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Equal bounds
res1 = torch.ones(1, device=device)
res2 = torch.tensor((), device=device)
torch.range(1, 1, -1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
torch.range(1, 1, 1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# TODO: this test should be updated
def test_range_warning(self, device):
with warnings.catch_warnings(record=True) as w:
torch.range(0, 10, device=device)
self.assertEqual(len(w), 1)
# TODO: this test should be updated
@onlyCPU
def test_arange(self, device):
res = torch.tensor(range(10000))
res1 = torch.arange(0, 10000) # Use a larger number so vectorized code can be triggered
res2 = torch.tensor([], dtype=torch.int64)
torch.arange(0, 10000, out=res2)
self.assertEqual(res, res1, atol=0, rtol=0)
self.assertEqual(res, res2, atol=0, rtol=0)
# Vectorization on non-contiguous tensors
res = torch.rand(3, 3, 300000).to(torch.int64)
res = res.permute(2, 0, 1)
torch.arange(0, 300000 * 3 * 3, out=res)
self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3))
# Check arange with only one argument
res1 = torch.arange(10)
res2 = torch.arange(0, 10)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Check arange for non-contiguous tensors.
x = torch.zeros(2, 3)
torch.arange(0, 4, out=x.narrow(1, 1, 2))
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
self.assertEqual(x, res2, atol=1e-16, rtol=0)
# Check negative
res1 = torch.Tensor((1, 0))
res2 = torch.Tensor()
torch.arange(1, -1, -1, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Equal bounds
res1 = torch.ones(1)
res2 = torch.Tensor()
torch.arange(1, 0, -1, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
torch.arange(1, 2, 1, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# FloatTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor())
self.assertEqual(res1, [0.6, 0.7, 0.8])
res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# DoubleTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor())
self.assertEqual(res1, [0.6, 0.7, 0.8])
res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# Bool Input matching numpy semantics
r = torch.arange(True)
self.assertEqual(r[0], 0)
r2 = torch.arange(False)
self.assertEqual(len(r2), 0)
self.assertEqual(r.dtype, torch.int64)
self.assertEqual(r2.dtype, torch.int64)
# Check that it's exclusive
r = torch.arange(0, 5)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 5)
r = torch.arange(0, 5, 2)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 3)
r1 = torch.arange(0, 5 + 1e-6)
# NB: without the dtype, we'll infer output type to be int64
r2 = torch.arange(0, 5, dtype=torch.float32)
r3 = torch.arange(0, 5 - 1e-6)
self.assertEqual(r1[:-1], r2, atol=0, rtol=0)
self.assertEqual(r2, r3, atol=0, rtol=0)
r1 = torch.arange(10, -1 + 1e-6, -1)
# NB: without the dtype, we'll infer output type to be int64
r2 = torch.arange(10, -1, -1, dtype=torch.float32)
r3 = torch.arange(10, -1 - 1e-6, -1)
self.assertEqual(r1, r2, atol=0, rtol=0)
self.assertEqual(r2, r3[:-1], atol=0, rtol=0)
# Test Rounding Errors
line = torch.zeros(size=(1, 49))
self.assertWarnsRegex(UserWarning, 'The out tensor will be resized',
lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line))
self.assertEqual(line.shape, [50])
x = torch.empty(1).expand(10)
self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x))
msg = "unsupported range"
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf')))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf')))
for device in torch.testing.get_all_device_types():
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device))
# check with step size
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device))
self.assertRaisesRegex(
RuntimeError, "overflow",
lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device))
# check that it holds a consistent output shape on precision-cornered step sizes
d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device)
self.assertEqual(d.shape[0], 800)
# TODO: this test should be updated
@onlyCPU
def test_arange_inference(self, device):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.float32)
# end only
self.assertIs(torch.float32, torch.arange(1.).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype)
self.assertIs(torch.int64, torch.arange(1).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype)
# start, end, [step]
self.assertIs(torch.float32, torch.arange(1., 3).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype)
self.assertIs(torch.float32, torch.arange(1, 3.).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype)
self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype)
self.assertIs(torch.float32,
torch.arange(torch.tensor(1),
torch.tensor(3, dtype=torch.int16),
torch.tensor(1., dtype=torch.float64)).dtype)
self.assertIs(torch.int64, torch.arange(1, 3).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype)
self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype)
self.assertIs(torch.int64,
torch.arange(torch.tensor(1),
torch.tensor(3),
torch.tensor(1, dtype=torch.int16)).dtype)
torch.set_default_dtype(saved_dtype)
def test_empty_strided(self, device):
for shape in [(2, 3, 4), (0, 2, 0)]:
# some of these cases are pretty strange, just verifying that if as_strided
# allows them then empty_strided can as well.
for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]:
empty_strided = torch.empty_strided(shape, strides, device=device)
# as_strided checks the storage size is big enough to support such a strided tensor;
# instead of repeating this calculation, we just use empty_strided which does the same
# calculation when setting the storage size.
as_strided = torch.empty(empty_strided.storage().size(),
device=device).as_strided(shape, strides)
self.assertEqual(empty_strided.shape, as_strided.shape)
self.assertEqual(empty_strided.stride(), as_strided.stride())
def test_strided_mismatched_stride_shape(self, device):
for shape, strides in [((1, ), ()), ((1, 2), (1, ))]:
with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"):
torch.tensor(0.42, device=device).as_strided(shape, strides)
with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"):
torch.tensor(0.42, device=device).as_strided_(shape, strides)
def test_empty_tensor_props(self, device):
sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)]
for size in sizes:
x = torch.empty(tuple(size), device=device)
self.assertEqual(size, x.shape)
self.assertTrue(x.is_contiguous())
size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size)
y = torch.empty(tuple(size_ones_instead_of_zeros), device=device)
self.assertEqual(x.stride(), y.stride())
def test_eye(self, device):
for dtype in torch.testing.get_all_dtypes():
if dtype == torch.bfloat16:
continue
for n, m in product([3, 5, 7], repeat=2):
# Construct identity using diagonal and fill
res1 = torch.eye(n, m, device=device, dtype=dtype)
naive_eye = torch.zeros(n, m, dtype=dtype, device=device)
naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1)
self.assertEqual(naive_eye, res1)
# Check eye_out outputs
res2 = torch.empty(0, device=device, dtype=dtype)
torch.eye(n, m, out=res2)
self.assertEqual(res1, res2)
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@precisionOverride({torch.float: 1e-8, torch.double: 1e-10})
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False) +
torch.testing.get_all_complex_dtypes()))
def test_linspace_vs_numpy(self, device, dtype):
start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0)
end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0)
for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]:
t = torch.linspace(start, end, steps, device=device, dtype=dtype)
a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
t = t.cpu()
self.assertEqual(t, torch.from_numpy(a))
self.assertTrue(t[0].item() == a[0])
self.assertTrue(t[steps - 1].item() == a[steps - 1])
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@precisionOverride({torch.float: 1e-6, torch.double: 1e-10})
@dtypes(torch.float, torch.double)
def test_logspace_vs_numpy(self, device, dtype):
start = -0.0316082797944545745849609375
end = .0315315723419189453125
for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]:
t = torch.logspace(start, end, steps, device=device, dtype=dtype)
a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
t = t.cpu()
self.assertEqual(t, torch.from_numpy(a))
self.assertEqual(t[0], a[0])
self.assertEqual(t[steps - 1], a[steps - 1])
@largeCUDATensorTest('16GB')
def test_range_factories_64bit_indexing(self, device):
bigint = 2 ** 31 + 1
t = torch.arange(bigint, dtype=torch.long, device=device)
self.assertEqual(t[-1].item(), bigint - 1)
del t
t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device)
self.assertEqual(t[-1].item(), 1)
del t
t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device)
self.assertEqual(t[-1].item(), 2)
del t
@onlyOnCPUAndCUDA
def test_tensor_ctor_device_inference(self, device):
torch_device = torch.device(device)
values = torch.tensor((1, 2, 3), device=device)
# Tests tensor and as_tensor
# Note: warnings are suppressed (suppresses warnings)
for op in (torch.tensor, torch.as_tensor):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
self.assertEqual(op(values).device, torch_device)
self.assertEqual(op(values, dtype=torch.float64).device, torch_device)
if self.device_type == 'cuda':
with torch.cuda.device(device):
self.assertEqual(op(values.cpu()).device, torch.device('cpu'))
# Tests sparse ctor
indices = torch.tensor([[0, 1, 1],
[2, 0, 1],
[2, 1, 0]], device=device)
sparse_size = (3, 3, 3)
sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size)
self.assertEqual(sparse_default.device, torch_device)
sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64)
self.assertEqual(sparse_with_dtype.device, torch_device)
if self.device_type == 'cuda':
with torch.cuda.device(device):
sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(),
sparse_size, dtype=torch.float64)
self.assertEqual(sparse_with_dtype.device, torch.device('cpu'))
def test_tensor_factories_empty(self, device):
# ensure we can create empty tensors from each factory function
shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)]
for shape in shapes:
for dt in torch.testing.get_all_dtypes():
self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape)
self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape)
if dt == torch.bfloat16 and device.startswith('cuda') and IS_WINDOWS:
# TODO: https://github.com/pytorch/pytorch/issues/33793
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape)
elif dt == torch.bool:
self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape)
elif dt.is_complex:
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape)
else:
self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape)
if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex64, torch.complex128}:
self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape)
if dt == torch.double or dt == torch.float or dt.is_complex:
self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual((0,), torch.arange(0, device=device).shape)
self.assertEqual((0, 0), torch.eye(0, device=device).shape)
self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape)
self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape)
self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape)
self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape)
self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape)
self.assertEqual((0,), torch.randperm(0, device=device).shape)
self.assertEqual((0,), torch.bartlett_window(0, device=device).shape)
self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape)
self.assertEqual((0,), torch.hamming_window(0, device=device).shape)
self.assertEqual((0,), torch.hann_window(0, device=device).shape)
self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape)
self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape)
@onlyCUDA
def test_tensor_factory_gpu_type_inference(self, device):
saved_type = torch.Tensor().type()
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
torch.set_default_dtype(torch.float32)
self.assertIs(torch.float32, torch.tensor(0.).dtype)
self.assertEqual(torch.device(device), torch.tensor(0.).device)
torch.set_default_dtype(torch.float64)
self.assertIs(torch.float64, torch.tensor(0.).dtype)
self.assertEqual(torch.device(device), torch.tensor(0.).device)
torch.set_default_tensor_type(saved_type)
@onlyCUDA
def test_tensor_factory_gpu_type(self, device):
saved_type = torch.Tensor().type()
torch.set_default_tensor_type(torch.cuda.FloatTensor)
x = torch.zeros((5, 5))
self.assertIs(torch.float32, x.dtype)
self.assertTrue(x.is_cuda)
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
x = torch.zeros((5, 5))
self.assertIs(torch.float64, x.dtype)
self.assertTrue(x.is_cuda)
torch.set_default_tensor_type(saved_type)
@skipCPUIf(True, 'compares device with cpu')
@dtypes(torch.int, torch.long, torch.float, torch.double)
def test_arange_device_vs_cpu(self, device, dtype):
cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu')
device_tensor = torch.arange(0, 10, dtype=dtype, device=device)
self.assertEqual(cpu_tensor, device_tensor)
@onlyCUDA
@skipCUDAIfNotRocm
def test_arange_bfloat16(self, device):
ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device)
bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device)
self.assertEqual(ref_tensor, bfloat16_tensor)
# step=2
ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device)
bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device)
self.assertEqual(ref_tensor, bfloat16_tensor)
@dtypes(*torch.testing.get_all_dtypes(include_bool=False, include_half=False))
@dtypesIfCUDA(*torch.testing.get_all_dtypes(include_bool=False, include_half=True))
def test_linspace(self, device, dtype):
_from = random.random()
to = _from + random.random()
res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype)
res2 = torch.tensor((), device=device, dtype=dtype)
torch.linspace(_from, to, 137, dtype=dtype, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# small tensor
self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype),
torch.tensor(list(range(10, 21)), device=device, dtype=dtype))
# large tensor
if dtype not in (torch.int8, torch.uint8):
self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype),
torch.tensor(list(range(10, 2001)), device=device, dtype=dtype))
# Vectorization on non-contiguous tensors
if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test
res = torch.rand(3, 3, 1000, device=device).to(dtype)
res = res.permute(2, 0, 1)
torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res)
self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype))
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype))
# steps = 1
self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype),
torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0)
# steps = 0
self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0)
# Check linspace for generating the correct output for each dtype.
start = 0 if dtype == torch.uint8 else -100
expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double)
actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype)
# If on GPU, allow for minor error depending on dtype.
tol = 0.
if device != 'cpu':
if dtype == torch.half:
tol = 1e-1
elif dtype == torch.float:
tol = 1e-5
elif dtype == torch.double:
tol = 1e-10
self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0)
# Check linspace for generating with start > end.
self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype),
torch.tensor((2, 1, 0), device=device, dtype=dtype),
atol=0, rtol=0)
# Create non-complex tensor from complex numbers
if not dtype.is_complex:
self.assertRaises(RuntimeError, lambda: torch.linspace(1j, 2j, 3, device=device, dtype=dtype))
# Check for race condition (correctness when applied on a large tensor).
if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16):
y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0),
1000000, device=device, dtype=dtype)
if dtype.is_complex:
cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag)
else:
cond = y[:-1] < y[1:]
correct = all(cond)
self.assertTrue(correct)
# Check linspace for non-contiguous tensors.
x = torch.zeros(2, 3, device=device, dtype=dtype)
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype)
self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0)
def test_linspace_deduction(self, device):
# Test deduction from input parameters.
self.assertEqual(torch.linspace(1, 2, device=device).dtype, torch.float32)
self.assertEqual(torch.linspace(1., 2, device=device).dtype, torch.float32)
self.assertEqual(torch.linspace(1., -2., device=device).dtype, torch.float32)
# TODO: Need fix
with self.assertRaises(RuntimeError):
torch.linspace(1j, -2j, device=device)
# The implementation of linspace+logspace goes through a different path
# when the steps arg is equal to 0 or 1. For other values of `steps`
# they call specialized linspace (or logspace) kernels.
LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1]
# NOTE [Linspace+Logspace precision override]
# Our Linspace and logspace torch.half CUDA kernels are not very precise.
# Since linspace/logspace are deterministic, we can compute an expected
# amount of error (by testing without a precision override), adding a tiny
# amount (EPS) to that, and using that value as the override.
LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5
# Compares linspace device vs. cpu
def _test_linspace(self, device, dtype, steps):
a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device)
b = torch.linspace(0, 10, steps=steps)
self.assertEqual(a, b, exact_dtype=False)
# See NOTE [Linspace+Logspace precision override]
@skipCPUIf(True, "compares with CPU")
@precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS})
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes()))
def test_linspace_device_vs_cpu(self, device, dtype):
self._test_linspace(device, dtype, steps=10)
@skipCPUIf(True, "compares with CPU")
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes()))
def test_linspace_special_steps(self, device, dtype):
for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS:
self._test_linspace(device, dtype, steps=steps)
# Compares logspace device vs cpu
def _test_logspace(self, device, dtype, steps):
a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device)
b = torch.logspace(1, 1.1, steps=steps)
self.assertEqual(a, b, exact_dtype=False)
# Compares logspace device vs cpu
def _test_logspace_base2(self, device, dtype, steps):
a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device)
b = torch.logspace(1, 1.1, steps=steps, base=2)
self.assertEqual(a, b, exact_dtype=False)
# See NOTE [Linspace+Logspace precision override]
@skipCPUIf(True, "compares with CPU")
@precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS})
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_logspace_device_vs_cpu(self, device, dtype):
self._test_logspace(device, dtype, steps=10)
# See NOTE [Linspace+Logspace precision override]
@skipCPUIf(True, "compares with CPU")
@precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS})
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_logspace_base2(self, device, dtype):
self._test_logspace_base2(device, dtype, steps=10)
@skipCPUIf(True, "compares with CPU")
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_logspace_special_steps(self, device, dtype):
for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS:
self._test_logspace(device, dtype, steps=steps)
self._test_logspace_base2(device, dtype, steps=steps)
@precisionOverride({torch.half: 1e-1, torch.float: 1e-5, torch.double: 1e-10})
@dtypes(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double)
@dtypesIfCUDA(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.half, torch.float, torch.double)
def test_logspace(self, device, dtype):
_from = random.random()
to = _from + random.random()
res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype)
res2 = torch.tensor((), device=device, dtype=dtype)
torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype))
self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype),
torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0)
# Check precision - start, stop and base are chosen to avoid overflow
# steps is chosen so that step size is not subject to rounding error
# a tolerance is needed for gpu tests due to differences in computation
atol = None
rtol = None
if self.device_type == 'cpu':
atol = 0
rtol = 0
self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype),
torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype),
atol=atol, rtol=rtol)
# Check non-default base=2
self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype),
torch.ones(1, device=device, dtype=dtype) * 2)
self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype),
torch.tensor((1, 2, 4), device=device, dtype=dtype))
# Check logspace_ for generating with start > end.
self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype),
torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0)
# Check logspace_ for non-contiguous tensors.
x = torch.zeros(2, 3, device=device, dtype=dtype)
y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0)
@onlyOnCPUAndCUDA
@dtypes(torch.half, torch.float, torch.double)
def test_full_inference(self, device, dtype):
size = (2, 2)
prev_default = torch.get_default_dtype()
torch.set_default_dtype(dtype)
# Tests bool fill value inference
t = torch.full(size, True)
self.assertEqual(t.dtype, torch.bool)
# Tests integer fill value inference
t = torch.full(size, 1)
self.assertEqual(t.dtype, torch.long)
# Tests float fill value inference
t = torch.full(size, 1.)
self.assertEqual(t.dtype, dtype)
# Tests complex inference
t = torch.full(size, (1 + 1j))
ctype = torch.complex128 if dtype is torch.double else torch.complex64
self.assertEqual(t.dtype, ctype)
torch.set_default_dtype(prev_default)
def test_full_out(self, device):
size = (5,)
o = torch.empty(size, device=device, dtype=torch.long)
# verifies dtype/out conflict throws a RuntimeError
with self.assertRaises(RuntimeError):
torch.full(o.shape, 1., dtype=torch.float, out=o)
# verifies out dtype overrides inference
self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype)
self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype)
# Class for testing random tensor creation ops, like torch.randint
class TestRandomTensorCreation(TestCase):
exact_dtype = True
# TODO: this test should be updated
@onlyCPU
def test_randint_inference(self, device):
size = (2, 1)
for args in [(3,), (1, 3)]: # (low,) and (low, high)
self.assertIs(torch.int64, torch.randint(*args, size=size).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype)
self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype)
out = torch.empty(size, dtype=torch.float32)
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype)
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype)
out = torch.empty(size, dtype=torch.int64)
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype)
# TODO: this test should be updated
@onlyCPU
def test_randint(self, device):
SIZE = 100
def seed(generator):
if generator is None:
torch.manual_seed(123456)
else:
generator.manual_seed(123456)
return generator
for generator in (None, torch.Generator()):
generator = seed(generator)
res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator)
res2 = torch.empty((), dtype=torch.int64)
generator = seed(generator)
torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2)
generator = seed(generator)
res3 = torch.randint(6, (SIZE, SIZE), generator=generator)
res4 = torch.empty((), dtype=torch.int64)
generator = seed(generator)
torch.randint(6, (SIZE, SIZE), out=res4, generator=generator)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
self.assertEqual(res1, res4)
self.assertEqual(res2, res3)
self.assertEqual(res2, res4)
self.assertEqual(res3, res4)
self.assertTrue((res1 < 6).all().item())
self.assertTrue((res1 >= 0).all().item())
@dtypes(torch.half, torch.float, torch.double,
torch.complex32, torch.complex64, torch.complex128)
def test_randn(self, device, dtype):
SIZE = 100
for size in [0, SIZE]:
torch.manual_seed(123456)
res1 = torch.randn(size, size, dtype=dtype, device=device)
res2 = torch.tensor([], dtype=dtype, device=device)
torch.manual_seed(123456)
torch.randn(size, size, out=res2)
self.assertEqual(res1, res2)
@dtypes(torch.float, torch.double, torch.complex64, torch.complex128)
def test_rand(self, device, dtype):
SIZE = 100
for size in [0, SIZE]:
torch.manual_seed(123456)
res1 = torch.rand(size, size, dtype=dtype, device=device)
res2 = torch.tensor([], dtype=dtype, device=device)
torch.manual_seed(123456)
torch.rand(size, size, out=res2)
self.assertEqual(res1, res2)
@slowTest
def test_randperm(self, device):
if device == 'cpu':
rng_device = None
else:
rng_device = [device]
# Test core functionality. On CUDA, for small n, randperm is offloaded to CPU instead. For large n, randperm is
# executed on GPU.
for n in (100, 50000, 100000):
# Ensure both integer and floating-point numbers are tested. Half follows an execution path that is
# different from others on CUDA.
for dtype in (torch.long, torch.half, torch.float):
if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here.
continue
with torch.random.fork_rng(devices=rng_device):
res1 = torch.randperm(n, dtype=dtype, device=device)
res2 = torch.empty(0, dtype=dtype, device=device)
torch.randperm(n, out=res2, dtype=dtype, device=device)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Default type is long
for n in (100, 10000):
self.assertEqual(torch.randperm(n, device=device).dtype, torch.long)
# randperm of 0 elements is an empty tensor
res1 = torch.randperm(0)
res2 = torch.tensor(5, dtype=dtype, device=device)
torch.randperm(0, out=res2)
self.assertEqual(res1.numel(), 0)
self.assertEqual(res2.numel(), 0)
# Test exceptions when n is too large for a floating point type
for dtype, small_n, large_n in ((torch.half, 2**11 + 1, 2**11 + 2),
(torch.float, 2**24 + 1, 2**24 + 2),
(torch.double, 2**25, # 2**53 + 1 is too large to run
2**53 + 2)):
res = torch.empty(0, dtype=dtype, device=device)
torch.randperm(small_n, out=res) # No exception expected
self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device))
# Test non-contiguous tensors
for n in (4, 5, 6, 10, 20):
non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t()
self.assertFalse(non_contiguous_tensor.is_contiguous())
with torch.random.fork_rng(devices=rng_device):
res = torch.randperm(n, dtype=torch.long, device=device)
torch.randperm(n, out=non_contiguous_tensor)
self.assertEqual(non_contiguous_tensor, res)
# Class for testing *like ops, like torch.ones_like
class TestLikeTensorCreation(TestCase):
exact_dtype = True
# TODO: this test should be updated
def test_ones_like(self, device):
expected = torch.ones(100, 100, device=device)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
# test boolean tensor
expected = torch.tensor([True, True], device=device, dtype=torch.bool)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
# TODO: this test should be updated
@onlyCPU
def test_empty_like(self, device):
x = torch.autograd.Variable(torch.Tensor())
y = torch.autograd.Variable(torch.randn(4, 4))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
for a in (x, y, z):
self.assertEqual(torch.empty_like(a).shape, a.shape)
self.assertEqualTypeString(torch.empty_like(a), a)
def test_zeros_like(self, device):
expected = torch.zeros((100, 100,), device=device)
res1 = torch.zeros_like(expected)
self.assertEqual(res1, expected)
@deviceCountAtLeast(2)
def test_zeros_like_multiple_device(self, devices):
expected = torch.zeros(100, 100, device=devices[0])
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
output = torch.zeros_like(x)
self.assertEqual(output, expected)
@deviceCountAtLeast(2)
def test_ones_like_multiple_device(self, devices):
expected = torch.ones(100, 100, device=devices[0])
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
output = torch.ones_like(x)
self.assertEqual(output, expected)
# Full-like precedence is the explicit dtype then the dtype of the "like"
# tensor.
@onlyOnCPUAndCUDA
def test_full_like_inference(self, device):
size = (2, 2)
like = torch.empty((5,), device=device, dtype=torch.long)
self.assertEqual(torch.full_like(like, 1.).dtype, torch.long)
self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype,
torch.complex64)
instantiate_device_type_tests(TestTensorCreation, globals())
instantiate_device_type_tests(TestRandomTensorCreation, globals())
instantiate_device_type_tests(TestLikeTensorCreation, globals())
if __name__ == '__main__':
run_tests()