| import warnings |
| import unittest |
| from itertools import product |
| import random |
| |
| import torch |
| |
| from torch.testing._internal.common_utils import \ |
| (TestCase, run_tests, do_test_empty_full, TEST_NUMPY, suppress_warnings, |
| IS_WINDOWS, torch_to_numpy_dtype_dict, slowTest) |
| from torch.testing._internal.common_device_type import \ |
| (instantiate_device_type_tests, deviceCountAtLeast, onlyOnCPUAndCUDA, |
| onlyCPU, skipCUDAIfNotRocm, largeCUDATensorTest, precisionOverride, dtypes, |
| onlyCUDA, skipCPUIf, dtypesIfCUDA) |
| |
| if TEST_NUMPY: |
| import numpy as np |
| |
| # Test suite for tensor creation ops |
| # |
| # Includes creation functions like torch.eye, random creation functions like |
| # torch.rand, and *like functions like torch.ones_like. |
| # DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in |
| # test_torch.py) OR numpy interop (which is also still tested in test_torch.py) |
| # |
| # See https://pytorch.org/docs/master/torch.html#creation-ops |
| |
| class TestTensorCreation(TestCase): |
| exact_dtype = True |
| |
| # TODO: this test should be updated |
| @onlyOnCPUAndCUDA |
| def test_empty_full(self, device): |
| torch_device = torch.device(device) |
| device_type = torch_device.type |
| |
| if device_type == 'cpu': |
| do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch_device) |
| if device_type == 'cuda': |
| do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, None) |
| do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch_device) |
| |
| # TODO: this test should be updated |
| @suppress_warnings |
| @onlyOnCPUAndCUDA |
| @deviceCountAtLeast(1) |
| def test_tensor_device(self, devices): |
| device_type = torch.device(devices[0]).type |
| if device_type == 'cpu': |
| self.assertEqual('cpu', torch.tensor(5).device.type) |
| self.assertEqual('cpu', |
| torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type) |
| self.assertEqual('cpu', |
| torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type) |
| self.assertEqual('cpu', |
| torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type) |
| |
| if TEST_NUMPY: |
| self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type) |
| if device_type == 'cuda': |
| self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device)) |
| self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device)) |
| self.assertEqual('cuda:0', |
| str(torch.tensor(5, dtype=torch.int64, device=0).device)) |
| self.assertEqual('cuda:0', |
| str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device)) |
| self.assertEqual('cuda:0', |
| str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device)) |
| |
| if TEST_NUMPY: |
| self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device)) |
| |
| for device in devices: |
| with torch.cuda.device(device): |
| device_string = 'cuda:' + str(torch.cuda.current_device()) |
| self.assertEqual(device_string, |
| str(torch.tensor(5, dtype=torch.int64, device='cuda').device)) |
| |
| with self.assertRaises(RuntimeError): |
| torch.tensor(5).cuda('cpu') |
| with self.assertRaises(RuntimeError): |
| torch.tensor(5).cuda('cpu:0') |
| |
| if len(devices) > 1: |
| self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device)) |
| self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device)) |
| self.assertEqual('cuda:1', |
| str(torch.tensor(5, dtype=torch.int64, device=1).device)) |
| self.assertEqual('cuda:1', |
| str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device)) |
| self.assertEqual('cuda:1', |
| str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), |
| device='cuda:1').device)) |
| |
| if TEST_NUMPY: |
| self.assertEqual('cuda:1', |
| str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device)) |
| |
| # TODO: this test should be updated |
| @onlyOnCPUAndCUDA |
| def test_as_strided_neg(self, device): |
| error = r'as_strided: Negative strides are not supported at the ' \ |
| r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]' |
| with self.assertRaisesRegex(RuntimeError, error): |
| torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1)) |
| with self.assertRaisesRegex(RuntimeError, error): |
| torch.as_strided(torch.ones(14, device=device), (2,), (-11,)) |
| |
| # TODO: this test should be updated |
| def test_zeros(self, device): |
| res1 = torch.zeros(100, 100, device=device) |
| res2 = torch.tensor((), device=device) |
| torch.zeros(100, 100, device=device, out=res2) |
| |
| self.assertEqual(res1, res2) |
| |
| boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool) |
| expected = torch.tensor([[False, False], [False, False]], |
| device=device, dtype=torch.bool) |
| self.assertEqual(boolTensor, expected) |
| |
| halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half) |
| expected = torch.tensor([[0.]], device=device, dtype=torch.float16) |
| self.assertEqual(halfTensor, expected) |
| |
| bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16) |
| expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16) |
| self.assertEqual(bfloat16Tensor, expected) |
| |
| complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64) |
| expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64) |
| self.assertEqual(complexTensor, expected) |
| |
| # TODO: this test should be updated |
| def test_zeros_out(self, device): |
| shape = (3, 4) |
| out = torch.zeros(shape, device=device) |
| torch.zeros(shape, device=device, out=out) |
| |
| # change the dtype, layout, device |
| with self.assertRaises(RuntimeError): |
| torch.zeros(shape, device=device, dtype=torch.int64, out=out) |
| with self.assertRaises(RuntimeError): |
| torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out) |
| |
| # leave them the same |
| self.assertEqual(torch.zeros(shape, device=device), |
| torch.zeros(shape, device=device, dtype=out.dtype, out=out)) |
| self.assertEqual(torch.zeros(shape, device=device), |
| torch.zeros(shape, device=device, layout=torch.strided, out=out)) |
| self.assertEqual(torch.zeros(shape, device=device), |
| torch.zeros(shape, device=device, out=out)) |
| |
| # TODO: this test should be updated |
| def test_ones(self, device): |
| res1 = torch.ones(100, 100, device=device) |
| res2 = torch.tensor((), device=device) |
| torch.ones(100, 100, device=device, out=res2) |
| self.assertEqual(res1, res2) |
| |
| # test boolean tensor |
| res1 = torch.ones(1, 2, device=device, dtype=torch.bool) |
| expected = torch.tensor([[True, True]], device=device, dtype=torch.bool) |
| self.assertEqual(res1, expected) |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_constructor_dtypes(self, device): |
| default_type = torch.Tensor().type() |
| self.assertIs(torch.Tensor().dtype, torch.get_default_dtype()) |
| |
| self.assertIs(torch.uint8, torch.ByteTensor.dtype) |
| self.assertIs(torch.float32, torch.FloatTensor.dtype) |
| self.assertIs(torch.float64, torch.DoubleTensor.dtype) |
| |
| torch.set_default_tensor_type('torch.FloatTensor') |
| self.assertIs(torch.float32, torch.get_default_dtype()) |
| self.assertIs(torch.FloatStorage, torch.Storage) |
| |
| torch.set_default_dtype(torch.float64) |
| self.assertIs(torch.float64, torch.get_default_dtype()) |
| self.assertIs(torch.DoubleStorage, torch.Storage) |
| |
| torch.set_default_tensor_type(torch.FloatTensor) |
| self.assertIs(torch.float32, torch.get_default_dtype()) |
| self.assertIs(torch.FloatStorage, torch.Storage) |
| |
| if torch.cuda.is_available(): |
| torch.set_default_tensor_type(torch.cuda.FloatTensor) |
| self.assertIs(torch.float32, torch.get_default_dtype()) |
| self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) |
| self.assertIs(torch.cuda.FloatStorage, torch.Storage) |
| |
| torch.set_default_dtype(torch.float64) |
| self.assertIs(torch.float64, torch.get_default_dtype()) |
| self.assertIs(torch.cuda.DoubleStorage, torch.Storage) |
| |
| # don't support integral or sparse default types. |
| self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) |
| self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64)) |
| |
| # don't allow passing dtype to set_default_tensor_type |
| self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) |
| |
| torch.set_default_tensor_type(default_type) |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_constructor_device_legacy(self, device): |
| self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda')) |
| self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) |
| self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda')) |
| |
| self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda')) |
| self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda')) |
| self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda')) |
| |
| x = torch.randn((3,), device='cpu') |
| self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) |
| self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) |
| self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda')) |
| |
| if torch.cuda.is_available(): |
| self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu')) |
| self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) |
| self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu')) |
| |
| default_type = torch.Tensor().type() |
| torch.set_default_tensor_type(torch.cuda.FloatTensor) |
| self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu')) |
| self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu')) |
| self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu')) |
| torch.set_default_tensor_type(torch.cuda.FloatTensor) |
| torch.set_default_tensor_type(default_type) |
| |
| x = torch.randn((3,), device='cuda') |
| self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) |
| self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) |
| self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu')) |
| |
| # TODO: this test should be updated |
| @suppress_warnings |
| @onlyCPU |
| def test_tensor_factory(self, device): |
| # TODO: This test probably doesn't make too much sense now that |
| # torch.tensor has been established for a while; it makes more |
| # sense to test the legacy behavior in terms of the new behavior |
| expected = torch.Tensor([1, 1]) |
| # test data |
| res1 = torch.tensor([1, 1]) |
| self.assertEqual(res1, expected, exact_dtype=False) |
| |
| res1 = torch.tensor([1, 1], dtype=torch.int) |
| self.assertEqual(res1, expected, exact_dtype=False) |
| self.assertIs(torch.int, res1.dtype) |
| |
| # test copy |
| res2 = torch.tensor(expected) |
| self.assertEqual(res2, expected) |
| res2[1] = 2 |
| self.assertEqual(expected, torch.ones_like(expected)) |
| |
| res2 = torch.tensor(expected, dtype=torch.int) |
| self.assertEqual(res1, expected, exact_dtype=False) |
| self.assertIs(torch.int, res1.dtype) |
| |
| # test copy with numpy |
| if TEST_NUMPY: |
| for dtype in [np.float64, np.int64, np.int8, np.uint8]: |
| a = np.array([5.]).astype(dtype) |
| res1 = torch.tensor(a) |
| self.assertEqual(5., res1[0].item()) |
| a[0] = 7. |
| self.assertEqual(5., res1[0].item()) |
| |
| # test boolean tensor |
| a = torch.tensor([True, True, False, True, True], dtype=torch.bool) |
| b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool) |
| self.assertEqual(a, b) |
| c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool) |
| self.assertEqual(a, c) |
| d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool) |
| e = torch.tensor((True, False, True, True, True), dtype=torch.bool) |
| self.assertEqual(e, d) |
| f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool) |
| self.assertEqual(e, f) |
| |
| int64_max = torch.iinfo(torch.int64).max |
| int64_min = torch.iinfo(torch.int64).min |
| float64_max = torch.finfo(torch.float64).max |
| float64_min = torch.finfo(torch.float64).min |
| g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool) |
| self.assertEqual(e, g_1) |
| g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool) |
| self.assertEqual(e, g_2) |
| g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool) |
| self.assertEqual(e, g_3) |
| |
| h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool) |
| i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool) |
| self.assertEqual(h, i) |
| j = torch.tensor((True, True, True, True), dtype=torch.bool) |
| k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool) |
| self.assertEqual(j, k) |
| |
| # TODO: this test should be updated |
| @suppress_warnings |
| @onlyCPU |
| def test_tensor_factory_copy_var(self, device): |
| def check_copy(copy, is_leaf, requires_grad, data_ptr=None): |
| if data_ptr is None: |
| data_ptr = copy.data_ptr |
| self.assertEqual(copy, source, exact_dtype=False) |
| self.assertTrue(copy.is_leaf == is_leaf) |
| self.assertTrue(copy.requires_grad == requires_grad) |
| self.assertTrue(copy.data_ptr == data_ptr) |
| |
| source = torch.randn(5, 5, dtype=torch.double, requires_grad=True) |
| # test torch.tensor() |
| check_copy(torch.tensor(source), True, False) |
| check_copy(torch.tensor(source, requires_grad=False), True, False) |
| check_copy(torch.tensor(source, requires_grad=True), True, True) |
| |
| # test tensor.new_tensor() |
| copy = torch.randn(1) |
| check_copy(copy.new_tensor(source), True, False) |
| check_copy(copy.new_tensor(source, requires_grad=False), True, False) |
| check_copy(copy.new_tensor(source, requires_grad=True), True, True) |
| |
| # test torch.as_tensor() |
| check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy |
| check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_tensor_factory_type_inference(self, device): |
| def test_inference(default_dtype): |
| saved_dtype = torch.get_default_dtype() |
| torch.set_default_dtype(default_dtype) |
| default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128 |
| self.assertIs(default_dtype, torch.tensor(()).dtype) |
| self.assertIs(default_dtype, torch.tensor(5.).dtype) |
| self.assertIs(torch.int64, torch.tensor(5).dtype) |
| self.assertIs(torch.bool, torch.tensor(True).dtype) |
| self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) |
| self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) |
| self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) |
| self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) |
| self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype) |
| |
| if TEST_NUMPY: |
| self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) |
| self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) |
| if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) |
| self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) |
| else: |
| self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) |
| self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) |
| self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) |
| self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) |
| self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) |
| torch.set_default_dtype(saved_dtype) |
| |
| test_inference(torch.float64) |
| test_inference(torch.float32) |
| |
| # TODO: this test should be updated |
| @suppress_warnings |
| @onlyCPU |
| def test_new_tensor(self, device): |
| expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) |
| # test data |
| res1 = expected.new_tensor([1, 1]) |
| self.assertEqual(res1, expected) |
| res1 = expected.new_tensor([1, 1], dtype=torch.int) |
| self.assertEqual(res1, expected, exact_dtype=False) |
| self.assertIs(torch.int, res1.dtype) |
| |
| # test copy |
| res2 = expected.new_tensor(expected) |
| self.assertEqual(res2, expected) |
| res2[1] = 2 |
| self.assertEqual(expected, torch.ones_like(expected)) |
| res2 = expected.new_tensor(expected, dtype=torch.int) |
| self.assertEqual(res2, expected, exact_dtype=False) |
| self.assertIs(torch.int, res2.dtype) |
| |
| # test copy with numpy |
| if TEST_NUMPY: |
| a = np.array([5.]) |
| res1 = torch.tensor(a) |
| res1 = res1.new_tensor(a) |
| self.assertEqual(5., res1[0].item()) |
| a[0] = 7. |
| self.assertEqual(5., res1[0].item()) |
| |
| if torch.cuda.device_count() >= 2: |
| expected = expected.cuda(1) |
| res1 = expected.new_tensor([1, 1]) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| res1 = expected.new_tensor([1, 1], dtype=torch.int) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| |
| res2 = expected.new_tensor(expected) |
| self.assertEqual(res2.get_device(), expected.get_device()) |
| res2 = expected.new_tensor(expected, dtype=torch.int) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res2.get_device(), expected.get_device()) |
| res2 = expected.new_tensor(expected, dtype=torch.int, device=0) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res2.get_device(), 0) |
| |
| res1 = expected.new_tensor(1) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| res1 = expected.new_tensor(1, dtype=torch.int) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_as_tensor(self, device): |
| # from python data |
| x = [[0, 1], [2, 3]] |
| self.assertEqual(torch.tensor(x), torch.as_tensor(x)) |
| self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) |
| |
| # python data with heterogeneous types |
| z = [0, 'torch'] |
| with self.assertRaisesRegex(TypeError, "invalid data type"): |
| torch.tensor(z) |
| torch.as_tensor(z) |
| |
| # python data with self-referential lists |
| z = [0] |
| z += [z] |
| with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): |
| torch.tensor(z) |
| torch.as_tensor(z) |
| |
| z = [[1, 2], z] |
| with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): |
| torch.tensor(z) |
| torch.as_tensor(z) |
| |
| # from tensor (doesn't copy unless type is different) |
| y = torch.tensor(x) |
| self.assertIs(y, torch.as_tensor(y)) |
| self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) |
| if torch.cuda.is_available(): |
| self.assertIsNot(y, torch.as_tensor(y, device='cuda')) |
| y_cuda = y.to('cuda') |
| self.assertIs(y_cuda, torch.as_tensor(y_cuda)) |
| self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) |
| |
| if TEST_NUMPY: |
| # doesn't copy |
| for dtype in [np.float64, np.int64, np.int8, np.uint8]: |
| n = np.random.rand(5, 6).astype(dtype) |
| n_astensor = torch.as_tensor(n) |
| self.assertEqual(torch.tensor(n), n_astensor) |
| n_astensor[0][0] = 25.7 |
| self.assertEqual(torch.tensor(n), n_astensor) |
| |
| # changing dtype causes copy |
| n = np.random.rand(5, 6).astype(np.float32) |
| n_astensor = torch.as_tensor(n, dtype=torch.float64) |
| self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) |
| n_astensor[0][1] = 250.8 |
| self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) |
| |
| # changing device causes copy |
| if torch.cuda.is_available(): |
| n = np.random.randn(5, 6) |
| n_astensor = torch.as_tensor(n, device='cuda') |
| self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) |
| n_astensor[0][2] = 250.9 |
| self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) |
| |
| # TODO: this test should be updated |
| @suppress_warnings |
| def test_range(self, device): |
| res1 = torch.range(0, 1, device=device) |
| res2 = torch.tensor((), device=device) |
| torch.range(0, 1, device=device, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # Check range for non-contiguous tensors. |
| x = torch.zeros(2, 3, device=device) |
| torch.range(0, 3, device=device, out=x.narrow(1, 1, 2)) |
| res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=torch.float32) |
| self.assertEqual(x, res2, atol=1e-16, rtol=0) |
| |
| # Check negative |
| res1 = torch.tensor((1, 0), device=device, dtype=torch.float32) |
| res2 = torch.tensor((), device=device) |
| torch.range(1, 0, -1, device=device, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # Equal bounds |
| res1 = torch.ones(1, device=device) |
| res2 = torch.tensor((), device=device) |
| torch.range(1, 1, -1, device=device, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| torch.range(1, 1, 1, device=device, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # TODO: this test should be updated |
| def test_range_warning(self, device): |
| with warnings.catch_warnings(record=True) as w: |
| torch.range(0, 10, device=device) |
| self.assertEqual(len(w), 1) |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_arange(self, device): |
| res = torch.tensor(range(10000)) |
| res1 = torch.arange(0, 10000) # Use a larger number so vectorized code can be triggered |
| res2 = torch.tensor([], dtype=torch.int64) |
| torch.arange(0, 10000, out=res2) |
| self.assertEqual(res, res1, atol=0, rtol=0) |
| self.assertEqual(res, res2, atol=0, rtol=0) |
| |
| # Vectorization on non-contiguous tensors |
| res = torch.rand(3, 3, 300000).to(torch.int64) |
| res = res.permute(2, 0, 1) |
| torch.arange(0, 300000 * 3 * 3, out=res) |
| self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3)) |
| |
| # Check arange with only one argument |
| res1 = torch.arange(10) |
| res2 = torch.arange(0, 10) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # Check arange for non-contiguous tensors. |
| x = torch.zeros(2, 3) |
| torch.arange(0, 4, out=x.narrow(1, 1, 2)) |
| res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) |
| self.assertEqual(x, res2, atol=1e-16, rtol=0) |
| |
| # Check negative |
| res1 = torch.Tensor((1, 0)) |
| res2 = torch.Tensor() |
| torch.arange(1, -1, -1, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # Equal bounds |
| res1 = torch.ones(1) |
| res2 = torch.Tensor() |
| torch.arange(1, 0, -1, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| torch.arange(1, 2, 1, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # FloatTensor |
| res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor()) |
| self.assertEqual(res1, [0.6, 0.7, 0.8]) |
| res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor()) |
| self.assertEqual(res1.size(0), 30) |
| self.assertEqual(res1[0], 1) |
| self.assertEqual(res1[29], 9.7) |
| |
| # DoubleTensor |
| res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor()) |
| self.assertEqual(res1, [0.6, 0.7, 0.8]) |
| res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor()) |
| self.assertEqual(res1.size(0), 30) |
| self.assertEqual(res1[0], 1) |
| self.assertEqual(res1[29], 9.7) |
| |
| # Bool Input matching numpy semantics |
| r = torch.arange(True) |
| self.assertEqual(r[0], 0) |
| r2 = torch.arange(False) |
| self.assertEqual(len(r2), 0) |
| self.assertEqual(r.dtype, torch.int64) |
| self.assertEqual(r2.dtype, torch.int64) |
| |
| # Check that it's exclusive |
| r = torch.arange(0, 5) |
| self.assertEqual(r.min(), 0) |
| self.assertEqual(r.max(), 4) |
| self.assertEqual(r.numel(), 5) |
| |
| r = torch.arange(0, 5, 2) |
| self.assertEqual(r.min(), 0) |
| self.assertEqual(r.max(), 4) |
| self.assertEqual(r.numel(), 3) |
| |
| r1 = torch.arange(0, 5 + 1e-6) |
| # NB: without the dtype, we'll infer output type to be int64 |
| r2 = torch.arange(0, 5, dtype=torch.float32) |
| r3 = torch.arange(0, 5 - 1e-6) |
| self.assertEqual(r1[:-1], r2, atol=0, rtol=0) |
| self.assertEqual(r2, r3, atol=0, rtol=0) |
| |
| r1 = torch.arange(10, -1 + 1e-6, -1) |
| # NB: without the dtype, we'll infer output type to be int64 |
| r2 = torch.arange(10, -1, -1, dtype=torch.float32) |
| r3 = torch.arange(10, -1 - 1e-6, -1) |
| self.assertEqual(r1, r2, atol=0, rtol=0) |
| self.assertEqual(r2, r3[:-1], atol=0, rtol=0) |
| |
| # Test Rounding Errors |
| line = torch.zeros(size=(1, 49)) |
| self.assertWarnsRegex(UserWarning, 'The out tensor will be resized', |
| lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line)) |
| self.assertEqual(line.shape, [50]) |
| |
| x = torch.empty(1).expand(10) |
| self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x)) |
| msg = "unsupported range" |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'))) |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'))) |
| |
| for device in torch.testing.get_all_device_types(): |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device)) |
| # check with step size |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device)) |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device)) |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device)) |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device)) |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device)) |
| self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device)) |
| |
| self.assertRaisesRegex( |
| RuntimeError, "overflow", |
| lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device)) |
| |
| # check that it holds a consistent output shape on precision-cornered step sizes |
| d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device) |
| self.assertEqual(d.shape[0], 800) |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_arange_inference(self, device): |
| saved_dtype = torch.get_default_dtype() |
| torch.set_default_dtype(torch.float32) |
| # end only |
| self.assertIs(torch.float32, torch.arange(1.).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) |
| |
| self.assertIs(torch.int64, torch.arange(1).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) |
| |
| # start, end, [step] |
| self.assertIs(torch.float32, torch.arange(1., 3).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) |
| self.assertIs(torch.float32, torch.arange(1, 3.).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) |
| self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) |
| self.assertIs(torch.float32, |
| torch.arange(torch.tensor(1), |
| torch.tensor(3, dtype=torch.int16), |
| torch.tensor(1., dtype=torch.float64)).dtype) |
| |
| self.assertIs(torch.int64, torch.arange(1, 3).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) |
| self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) |
| self.assertIs(torch.int64, |
| torch.arange(torch.tensor(1), |
| torch.tensor(3), |
| torch.tensor(1, dtype=torch.int16)).dtype) |
| torch.set_default_dtype(saved_dtype) |
| |
| def test_empty_strided(self, device): |
| for shape in [(2, 3, 4), (0, 2, 0)]: |
| # some of these cases are pretty strange, just verifying that if as_strided |
| # allows them then empty_strided can as well. |
| for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: |
| empty_strided = torch.empty_strided(shape, strides, device=device) |
| # as_strided checks the storage size is big enough to support such a strided tensor; |
| # instead of repeating this calculation, we just use empty_strided which does the same |
| # calculation when setting the storage size. |
| as_strided = torch.empty(empty_strided.storage().size(), |
| device=device).as_strided(shape, strides) |
| self.assertEqual(empty_strided.shape, as_strided.shape) |
| self.assertEqual(empty_strided.stride(), as_strided.stride()) |
| |
| def test_strided_mismatched_stride_shape(self, device): |
| for shape, strides in [((1, ), ()), ((1, 2), (1, ))]: |
| with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): |
| torch.tensor(0.42, device=device).as_strided(shape, strides) |
| |
| with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): |
| torch.tensor(0.42, device=device).as_strided_(shape, strides) |
| |
| def test_empty_tensor_props(self, device): |
| sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] |
| for size in sizes: |
| x = torch.empty(tuple(size), device=device) |
| self.assertEqual(size, x.shape) |
| self.assertTrue(x.is_contiguous()) |
| size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) |
| y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) |
| self.assertEqual(x.stride(), y.stride()) |
| |
| def test_eye(self, device): |
| for dtype in torch.testing.get_all_dtypes(): |
| if dtype == torch.bfloat16: |
| continue |
| for n, m in product([3, 5, 7], repeat=2): |
| # Construct identity using diagonal and fill |
| res1 = torch.eye(n, m, device=device, dtype=dtype) |
| naive_eye = torch.zeros(n, m, dtype=dtype, device=device) |
| naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) |
| self.assertEqual(naive_eye, res1) |
| |
| # Check eye_out outputs |
| res2 = torch.empty(0, device=device, dtype=dtype) |
| torch.eye(n, m, out=res2) |
| self.assertEqual(res1, res2) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| @precisionOverride({torch.float: 1e-8, torch.double: 1e-10}) |
| @dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False) + |
| torch.testing.get_all_complex_dtypes())) |
| def test_linspace_vs_numpy(self, device, dtype): |
| start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0) |
| end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0) |
| |
| for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: |
| t = torch.linspace(start, end, steps, device=device, dtype=dtype) |
| a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) |
| t = t.cpu() |
| self.assertEqual(t, torch.from_numpy(a)) |
| self.assertTrue(t[0].item() == a[0]) |
| self.assertTrue(t[steps - 1].item() == a[steps - 1]) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| @precisionOverride({torch.float: 1e-6, torch.double: 1e-10}) |
| @dtypes(torch.float, torch.double) |
| def test_logspace_vs_numpy(self, device, dtype): |
| start = -0.0316082797944545745849609375 |
| end = .0315315723419189453125 |
| |
| for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: |
| t = torch.logspace(start, end, steps, device=device, dtype=dtype) |
| a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) |
| t = t.cpu() |
| self.assertEqual(t, torch.from_numpy(a)) |
| self.assertEqual(t[0], a[0]) |
| self.assertEqual(t[steps - 1], a[steps - 1]) |
| |
| @largeCUDATensorTest('16GB') |
| def test_range_factories_64bit_indexing(self, device): |
| bigint = 2 ** 31 + 1 |
| t = torch.arange(bigint, dtype=torch.long, device=device) |
| self.assertEqual(t[-1].item(), bigint - 1) |
| del t |
| t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device) |
| self.assertEqual(t[-1].item(), 1) |
| del t |
| t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device) |
| self.assertEqual(t[-1].item(), 2) |
| del t |
| |
| @onlyOnCPUAndCUDA |
| def test_tensor_ctor_device_inference(self, device): |
| torch_device = torch.device(device) |
| values = torch.tensor((1, 2, 3), device=device) |
| |
| # Tests tensor and as_tensor |
| # Note: warnings are suppressed (suppresses warnings) |
| for op in (torch.tensor, torch.as_tensor): |
| with warnings.catch_warnings(): |
| warnings.simplefilter("ignore") |
| self.assertEqual(op(values).device, torch_device) |
| self.assertEqual(op(values, dtype=torch.float64).device, torch_device) |
| |
| if self.device_type == 'cuda': |
| with torch.cuda.device(device): |
| self.assertEqual(op(values.cpu()).device, torch.device('cpu')) |
| |
| # Tests sparse ctor |
| indices = torch.tensor([[0, 1, 1], |
| [2, 0, 1], |
| [2, 1, 0]], device=device) |
| sparse_size = (3, 3, 3) |
| |
| sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size) |
| self.assertEqual(sparse_default.device, torch_device) |
| |
| sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64) |
| self.assertEqual(sparse_with_dtype.device, torch_device) |
| |
| if self.device_type == 'cuda': |
| with torch.cuda.device(device): |
| sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(), |
| sparse_size, dtype=torch.float64) |
| self.assertEqual(sparse_with_dtype.device, torch.device('cpu')) |
| |
| def test_tensor_factories_empty(self, device): |
| # ensure we can create empty tensors from each factory function |
| shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)] |
| |
| for shape in shapes: |
| for dt in torch.testing.get_all_dtypes(): |
| |
| self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape) |
| self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape) |
| self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape) |
| self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape) |
| self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape) |
| self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape) |
| self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape) |
| self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape) |
| self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape) |
| |
| if dt == torch.bfloat16 and device.startswith('cuda') and IS_WINDOWS: |
| # TODO: https://github.com/pytorch/pytorch/issues/33793 |
| self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) |
| elif dt == torch.bool: |
| self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape) |
| self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape) |
| elif dt.is_complex: |
| self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) |
| else: |
| self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape) |
| self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape) |
| |
| if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex64, torch.complex128}: |
| self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape) |
| |
| if dt == torch.double or dt == torch.float or dt.is_complex: |
| self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape) |
| self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape) |
| |
| self.assertEqual((0,), torch.arange(0, device=device).shape) |
| self.assertEqual((0, 0), torch.eye(0, device=device).shape) |
| self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape) |
| self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape) |
| self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape) |
| self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape) |
| self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape) |
| self.assertEqual((0,), torch.randperm(0, device=device).shape) |
| self.assertEqual((0,), torch.bartlett_window(0, device=device).shape) |
| self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape) |
| self.assertEqual((0,), torch.hamming_window(0, device=device).shape) |
| self.assertEqual((0,), torch.hann_window(0, device=device).shape) |
| self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape) |
| self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape) |
| |
| @onlyCUDA |
| def test_tensor_factory_gpu_type_inference(self, device): |
| saved_type = torch.Tensor().type() |
| torch.set_default_tensor_type(torch.cuda.DoubleTensor) |
| torch.set_default_dtype(torch.float32) |
| self.assertIs(torch.float32, torch.tensor(0.).dtype) |
| self.assertEqual(torch.device(device), torch.tensor(0.).device) |
| torch.set_default_dtype(torch.float64) |
| self.assertIs(torch.float64, torch.tensor(0.).dtype) |
| self.assertEqual(torch.device(device), torch.tensor(0.).device) |
| torch.set_default_tensor_type(saved_type) |
| |
| @onlyCUDA |
| def test_tensor_factory_gpu_type(self, device): |
| saved_type = torch.Tensor().type() |
| torch.set_default_tensor_type(torch.cuda.FloatTensor) |
| x = torch.zeros((5, 5)) |
| self.assertIs(torch.float32, x.dtype) |
| self.assertTrue(x.is_cuda) |
| torch.set_default_tensor_type(torch.cuda.DoubleTensor) |
| x = torch.zeros((5, 5)) |
| self.assertIs(torch.float64, x.dtype) |
| self.assertTrue(x.is_cuda) |
| torch.set_default_tensor_type(saved_type) |
| |
| @skipCPUIf(True, 'compares device with cpu') |
| @dtypes(torch.int, torch.long, torch.float, torch.double) |
| def test_arange_device_vs_cpu(self, device, dtype): |
| cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu') |
| device_tensor = torch.arange(0, 10, dtype=dtype, device=device) |
| self.assertEqual(cpu_tensor, device_tensor) |
| |
| @onlyCUDA |
| @skipCUDAIfNotRocm |
| def test_arange_bfloat16(self, device): |
| ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device) |
| bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device) |
| self.assertEqual(ref_tensor, bfloat16_tensor) |
| |
| # step=2 |
| ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device) |
| bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device) |
| self.assertEqual(ref_tensor, bfloat16_tensor) |
| |
| @dtypes(*torch.testing.get_all_dtypes(include_bool=False, include_half=False)) |
| @dtypesIfCUDA(*torch.testing.get_all_dtypes(include_bool=False, include_half=True)) |
| def test_linspace(self, device, dtype): |
| _from = random.random() |
| to = _from + random.random() |
| res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype) |
| res2 = torch.tensor((), device=device, dtype=dtype) |
| torch.linspace(_from, to, 137, dtype=dtype, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # small tensor |
| self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype), |
| torch.tensor(list(range(10, 21)), device=device, dtype=dtype)) |
| # large tensor |
| if dtype not in (torch.int8, torch.uint8): |
| self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype), |
| torch.tensor(list(range(10, 2001)), device=device, dtype=dtype)) |
| |
| # Vectorization on non-contiguous tensors |
| if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test |
| res = torch.rand(3, 3, 1000, device=device).to(dtype) |
| res = res.permute(2, 0, 1) |
| torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res) |
| self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype)) |
| |
| self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype)) |
| # steps = 1 |
| self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype), |
| torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0) |
| # steps = 0 |
| self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0) |
| |
| # Check linspace for generating the correct output for each dtype. |
| start = 0 if dtype == torch.uint8 else -100 |
| expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double) |
| actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype) |
| # If on GPU, allow for minor error depending on dtype. |
| tol = 0. |
| if device != 'cpu': |
| if dtype == torch.half: |
| tol = 1e-1 |
| elif dtype == torch.float: |
| tol = 1e-5 |
| elif dtype == torch.double: |
| tol = 1e-10 |
| |
| self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0) |
| |
| # Check linspace for generating with start > end. |
| self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype), |
| torch.tensor((2, 1, 0), device=device, dtype=dtype), |
| atol=0, rtol=0) |
| |
| # Create non-complex tensor from complex numbers |
| if not dtype.is_complex: |
| self.assertRaises(RuntimeError, lambda: torch.linspace(1j, 2j, 3, device=device, dtype=dtype)) |
| |
| # Check for race condition (correctness when applied on a large tensor). |
| if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16): |
| y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0), |
| 1000000, device=device, dtype=dtype) |
| if dtype.is_complex: |
| cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag) |
| else: |
| cond = y[:-1] < y[1:] |
| correct = all(cond) |
| self.assertTrue(correct) |
| |
| # Check linspace for non-contiguous tensors. |
| x = torch.zeros(2, 3, device=device, dtype=dtype) |
| y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype) |
| self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0) |
| |
| def test_linspace_deduction(self, device): |
| # Test deduction from input parameters. |
| self.assertEqual(torch.linspace(1, 2, device=device).dtype, torch.float32) |
| self.assertEqual(torch.linspace(1., 2, device=device).dtype, torch.float32) |
| self.assertEqual(torch.linspace(1., -2., device=device).dtype, torch.float32) |
| # TODO: Need fix |
| with self.assertRaises(RuntimeError): |
| torch.linspace(1j, -2j, device=device) |
| |
| # The implementation of linspace+logspace goes through a different path |
| # when the steps arg is equal to 0 or 1. For other values of `steps` |
| # they call specialized linspace (or logspace) kernels. |
| LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1] |
| |
| # NOTE [Linspace+Logspace precision override] |
| # Our Linspace and logspace torch.half CUDA kernels are not very precise. |
| # Since linspace/logspace are deterministic, we can compute an expected |
| # amount of error (by testing without a precision override), adding a tiny |
| # amount (EPS) to that, and using that value as the override. |
| LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5 |
| |
| # Compares linspace device vs. cpu |
| def _test_linspace(self, device, dtype, steps): |
| a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device) |
| b = torch.linspace(0, 10, steps=steps) |
| self.assertEqual(a, b, exact_dtype=False) |
| |
| # See NOTE [Linspace+Logspace precision override] |
| @skipCPUIf(True, "compares with CPU") |
| @precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS}) |
| @dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes())) |
| def test_linspace_device_vs_cpu(self, device, dtype): |
| self._test_linspace(device, dtype, steps=10) |
| |
| @skipCPUIf(True, "compares with CPU") |
| @dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes())) |
| def test_linspace_special_steps(self, device, dtype): |
| for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: |
| self._test_linspace(device, dtype, steps=steps) |
| |
| # Compares logspace device vs cpu |
| def _test_logspace(self, device, dtype, steps): |
| a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device) |
| b = torch.logspace(1, 1.1, steps=steps) |
| self.assertEqual(a, b, exact_dtype=False) |
| |
| # Compares logspace device vs cpu |
| def _test_logspace_base2(self, device, dtype, steps): |
| a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device) |
| b = torch.logspace(1, 1.1, steps=steps, base=2) |
| self.assertEqual(a, b, exact_dtype=False) |
| |
| # See NOTE [Linspace+Logspace precision override] |
| @skipCPUIf(True, "compares with CPU") |
| @precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS}) |
| @dtypesIfCUDA(torch.half, torch.float, torch.double) |
| @dtypes(torch.float, torch.double) |
| def test_logspace_device_vs_cpu(self, device, dtype): |
| self._test_logspace(device, dtype, steps=10) |
| |
| # See NOTE [Linspace+Logspace precision override] |
| @skipCPUIf(True, "compares with CPU") |
| @precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS}) |
| @dtypesIfCUDA(torch.half, torch.float, torch.double) |
| @dtypes(torch.float, torch.double) |
| def test_logspace_base2(self, device, dtype): |
| self._test_logspace_base2(device, dtype, steps=10) |
| |
| @skipCPUIf(True, "compares with CPU") |
| @dtypesIfCUDA(torch.half, torch.float, torch.double) |
| @dtypes(torch.float, torch.double) |
| def test_logspace_special_steps(self, device, dtype): |
| for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: |
| self._test_logspace(device, dtype, steps=steps) |
| self._test_logspace_base2(device, dtype, steps=steps) |
| |
| @precisionOverride({torch.half: 1e-1, torch.float: 1e-5, torch.double: 1e-10}) |
| @dtypes(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double) |
| @dtypesIfCUDA(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.half, torch.float, torch.double) |
| def test_logspace(self, device, dtype): |
| _from = random.random() |
| to = _from + random.random() |
| res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype) |
| res2 = torch.tensor((), device=device, dtype=dtype) |
| torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype)) |
| self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype), |
| torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0) |
| |
| # Check precision - start, stop and base are chosen to avoid overflow |
| # steps is chosen so that step size is not subject to rounding error |
| # a tolerance is needed for gpu tests due to differences in computation |
| atol = None |
| rtol = None |
| if self.device_type == 'cpu': |
| atol = 0 |
| rtol = 0 |
| self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype), |
| torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype), |
| atol=atol, rtol=rtol) |
| |
| # Check non-default base=2 |
| self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype), |
| torch.ones(1, device=device, dtype=dtype) * 2) |
| self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype), |
| torch.tensor((1, 2, 4), device=device, dtype=dtype)) |
| |
| # Check logspace_ for generating with start > end. |
| self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype), |
| torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0) |
| |
| # Check logspace_ for non-contiguous tensors. |
| x = torch.zeros(2, 3, device=device, dtype=dtype) |
| y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) |
| self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0) |
| |
| @onlyOnCPUAndCUDA |
| @dtypes(torch.half, torch.float, torch.double) |
| def test_full_inference(self, device, dtype): |
| size = (2, 2) |
| |
| prev_default = torch.get_default_dtype() |
| torch.set_default_dtype(dtype) |
| |
| # Tests bool fill value inference |
| t = torch.full(size, True) |
| self.assertEqual(t.dtype, torch.bool) |
| |
| # Tests integer fill value inference |
| t = torch.full(size, 1) |
| self.assertEqual(t.dtype, torch.long) |
| |
| # Tests float fill value inference |
| t = torch.full(size, 1.) |
| self.assertEqual(t.dtype, dtype) |
| |
| # Tests complex inference |
| t = torch.full(size, (1 + 1j)) |
| ctype = torch.complex128 if dtype is torch.double else torch.complex64 |
| self.assertEqual(t.dtype, ctype) |
| |
| torch.set_default_dtype(prev_default) |
| |
| def test_full_out(self, device): |
| size = (5,) |
| o = torch.empty(size, device=device, dtype=torch.long) |
| |
| # verifies dtype/out conflict throws a RuntimeError |
| with self.assertRaises(RuntimeError): |
| torch.full(o.shape, 1., dtype=torch.float, out=o) |
| |
| # verifies out dtype overrides inference |
| self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype) |
| self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype) |
| |
| |
| |
| # Class for testing random tensor creation ops, like torch.randint |
| class TestRandomTensorCreation(TestCase): |
| exact_dtype = True |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_randint_inference(self, device): |
| size = (2, 1) |
| for args in [(3,), (1, 3)]: # (low,) and (low, high) |
| self.assertIs(torch.int64, torch.randint(*args, size=size).dtype) |
| self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype) |
| self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype) |
| self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype) |
| out = torch.empty(size, dtype=torch.float32) |
| self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype) |
| self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype) |
| out = torch.empty(size, dtype=torch.int64) |
| self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype) |
| self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype) |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_randint(self, device): |
| SIZE = 100 |
| |
| def seed(generator): |
| if generator is None: |
| torch.manual_seed(123456) |
| else: |
| generator.manual_seed(123456) |
| return generator |
| |
| for generator in (None, torch.Generator()): |
| generator = seed(generator) |
| res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator) |
| res2 = torch.empty((), dtype=torch.int64) |
| generator = seed(generator) |
| torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2) |
| generator = seed(generator) |
| res3 = torch.randint(6, (SIZE, SIZE), generator=generator) |
| res4 = torch.empty((), dtype=torch.int64) |
| generator = seed(generator) |
| torch.randint(6, (SIZE, SIZE), out=res4, generator=generator) |
| self.assertEqual(res1, res2) |
| self.assertEqual(res1, res3) |
| self.assertEqual(res1, res4) |
| self.assertEqual(res2, res3) |
| self.assertEqual(res2, res4) |
| self.assertEqual(res3, res4) |
| self.assertTrue((res1 < 6).all().item()) |
| self.assertTrue((res1 >= 0).all().item()) |
| |
| @dtypes(torch.half, torch.float, torch.double, |
| torch.complex32, torch.complex64, torch.complex128) |
| def test_randn(self, device, dtype): |
| SIZE = 100 |
| for size in [0, SIZE]: |
| torch.manual_seed(123456) |
| res1 = torch.randn(size, size, dtype=dtype, device=device) |
| res2 = torch.tensor([], dtype=dtype, device=device) |
| torch.manual_seed(123456) |
| torch.randn(size, size, out=res2) |
| self.assertEqual(res1, res2) |
| |
| @dtypes(torch.float, torch.double, torch.complex64, torch.complex128) |
| def test_rand(self, device, dtype): |
| SIZE = 100 |
| for size in [0, SIZE]: |
| torch.manual_seed(123456) |
| res1 = torch.rand(size, size, dtype=dtype, device=device) |
| res2 = torch.tensor([], dtype=dtype, device=device) |
| torch.manual_seed(123456) |
| torch.rand(size, size, out=res2) |
| self.assertEqual(res1, res2) |
| |
| @slowTest |
| def test_randperm(self, device): |
| if device == 'cpu': |
| rng_device = None |
| else: |
| rng_device = [device] |
| |
| # Test core functionality. On CUDA, for small n, randperm is offloaded to CPU instead. For large n, randperm is |
| # executed on GPU. |
| for n in (100, 50000, 100000): |
| # Ensure both integer and floating-point numbers are tested. Half follows an execution path that is |
| # different from others on CUDA. |
| for dtype in (torch.long, torch.half, torch.float): |
| if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. |
| continue |
| with torch.random.fork_rng(devices=rng_device): |
| res1 = torch.randperm(n, dtype=dtype, device=device) |
| res2 = torch.empty(0, dtype=dtype, device=device) |
| torch.randperm(n, out=res2, dtype=dtype, device=device) |
| self.assertEqual(res1, res2, atol=0, rtol=0) |
| |
| # Default type is long |
| for n in (100, 10000): |
| self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) |
| |
| # randperm of 0 elements is an empty tensor |
| res1 = torch.randperm(0) |
| res2 = torch.tensor(5, dtype=dtype, device=device) |
| torch.randperm(0, out=res2) |
| self.assertEqual(res1.numel(), 0) |
| self.assertEqual(res2.numel(), 0) |
| |
| # Test exceptions when n is too large for a floating point type |
| for dtype, small_n, large_n in ((torch.half, 2**11 + 1, 2**11 + 2), |
| (torch.float, 2**24 + 1, 2**24 + 2), |
| (torch.double, 2**25, # 2**53 + 1 is too large to run |
| 2**53 + 2)): |
| res = torch.empty(0, dtype=dtype, device=device) |
| torch.randperm(small_n, out=res) # No exception expected |
| self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device)) |
| |
| # Test non-contiguous tensors |
| for n in (4, 5, 6, 10, 20): |
| non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() |
| self.assertFalse(non_contiguous_tensor.is_contiguous()) |
| with torch.random.fork_rng(devices=rng_device): |
| res = torch.randperm(n, dtype=torch.long, device=device) |
| torch.randperm(n, out=non_contiguous_tensor) |
| self.assertEqual(non_contiguous_tensor, res) |
| |
| |
| # Class for testing *like ops, like torch.ones_like |
| class TestLikeTensorCreation(TestCase): |
| exact_dtype = True |
| |
| # TODO: this test should be updated |
| def test_ones_like(self, device): |
| expected = torch.ones(100, 100, device=device) |
| |
| res1 = torch.ones_like(expected) |
| self.assertEqual(res1, expected) |
| |
| # test boolean tensor |
| expected = torch.tensor([True, True], device=device, dtype=torch.bool) |
| res1 = torch.ones_like(expected) |
| self.assertEqual(res1, expected) |
| |
| # TODO: this test should be updated |
| @onlyCPU |
| def test_empty_like(self, device): |
| x = torch.autograd.Variable(torch.Tensor()) |
| y = torch.autograd.Variable(torch.randn(4, 4)) |
| z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) |
| for a in (x, y, z): |
| self.assertEqual(torch.empty_like(a).shape, a.shape) |
| self.assertEqualTypeString(torch.empty_like(a), a) |
| |
| def test_zeros_like(self, device): |
| expected = torch.zeros((100, 100,), device=device) |
| |
| res1 = torch.zeros_like(expected) |
| self.assertEqual(res1, expected) |
| |
| @deviceCountAtLeast(2) |
| def test_zeros_like_multiple_device(self, devices): |
| expected = torch.zeros(100, 100, device=devices[0]) |
| x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) |
| output = torch.zeros_like(x) |
| self.assertEqual(output, expected) |
| |
| @deviceCountAtLeast(2) |
| def test_ones_like_multiple_device(self, devices): |
| expected = torch.ones(100, 100, device=devices[0]) |
| x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) |
| output = torch.ones_like(x) |
| self.assertEqual(output, expected) |
| |
| # Full-like precedence is the explicit dtype then the dtype of the "like" |
| # tensor. |
| @onlyOnCPUAndCUDA |
| def test_full_like_inference(self, device): |
| size = (2, 2) |
| like = torch.empty((5,), device=device, dtype=torch.long) |
| |
| self.assertEqual(torch.full_like(like, 1.).dtype, torch.long) |
| self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype, |
| torch.complex64) |
| |
| |
| instantiate_device_type_tests(TestTensorCreation, globals()) |
| instantiate_device_type_tests(TestRandomTensorCreation, globals()) |
| instantiate_device_type_tests(TestLikeTensorCreation, globals()) |
| |
| if __name__ == '__main__': |
| run_tests() |