blob: 0468a7566980711cf99ca42e0d42e3bce9c0a7bb [file] [log] [blame]
#pragma once
#include <ATen/ATen.h>
#include "torch/csrc/autograd/variable.h"
#include <cstdint>
#include <tuple>
#include <type_traits>
#include <utility>
namespace torch {
// This class allows you to write variadic functions which
// call a (possibly overloaded) function on each argument,
// in order. This is most commonly used in autogenerated code,
// where it is convenient to have a function that can uniformly
// take arguments of different types. If your arguments
// are homogenous consider using a std::initializer_list instead.
template <typename F>
struct IterArgs {
template <typename... Args>
inline F& apply() {
return self();
}
// NB: Use perfect forwarding here, otherwise we'll make value
// copies of all arguments!
template <typename T, typename... Args>
inline F& apply(T&& arg, Args&&... args) {
self()(std::forward<T>(arg));
if (self().short_circuit()) {
return self();
} else {
return apply(std::forward<Args>(args)...);
}
}
// Here are some handy overloads which provide sensible
// defaults for container-like structures that one might
// be interested in recursing into. You can enable them
// by adding:
//
// using IterArgs<YourStructName>::operator()
//
// to your struct. These are not enabled by default because
// you may be able to process these structures more efficiently
// than handling them one-by-one.
template <typename T>
void operator()(at::ArrayRef<T> args) {
for (const auto& arg : args) {
self()(arg);
if (short_circuit())
return;
}
}
// NB: we need to specify std::vector manually as C++ won't
// do an implicit conversion to make a template deduction go through.
template <typename T>
void operator()(const std::vector<T>& args) {
self()(at::ArrayRef<T>{args});
}
bool short_circuit() {
return false;
}
private:
inline F& self() {
return *static_cast<F*>(this);
}
};
struct CountTensors : IterArgs<CountTensors> {
size_t out = 0;
void operator()(const at::Tensor& x) {
out += 1;
}
void operator()(at::ArrayRef<at::Tensor> xs) {
out += xs.size();
}
};
template <typename... Args>
size_t count_tensors(Args&&... args) {
return CountTensors().apply(std::forward<Args>(args)...).out;
}
struct CountVariables : IterArgs<CountVariables> {
size_t out = 0;
void operator()(const autograd::Variable& x) {
out += 1;
}
void operator()(at::ArrayRef<autograd::Variable> xs) {
out += xs.size();
}
};
template <typename... Args>
inline size_t count_variables(Args&&... args) {
return CountVariables().apply(std::forward<Args>(args)...).out;
}
//===----------------------------------------------------------------------===//
// std::index_sequence shim for C++11
//===----------------------------------------------------------------------===//
// A container of type-template parameter indices.
template <size_t... Is>
struct Indices {};
// Decrements the index N, adds N-1 to the list of indices and forwards
// whatever we arleady have.
template <size_t N, size_t... Is>
struct MakeIndices : MakeIndices<N - 1, N - 1, Is...> {};
// Partial specialization that forms our base case. When N is zero, we stop
// and define a typedef that will be visible to earlier classes due to
// inheritance. The typedef we define is an index list containing the numbers
// 0 through N-1.
template <size_t... Is>
struct MakeIndices<0, Is...> {
using indices = Indices<Is...>;
};
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
template <bool value, typename T = void>
using enable_if_t = typename std::enable_if<value, T>::type;
template <bool value, typename T = void>
using disable_if_t = enable_if_t<!value, T>;
template <typename T>
using decay_t = typename std::decay<T>::type;
namespace detail {
template <bool...>
struct pack;
} // namespace detail
template <bool... values>
struct all_of : std::is_same<
detail::pack<values..., true>,
detail::pack<true, values...>> {};
template <bool...>
struct any_of;
template <>
struct any_of<> : std::false_type {};
template <bool head, bool... tail>
struct any_of<head, tail...> {
static constexpr bool value = head || any_of<tail...>::value;
};
template <bool... values>
struct none_of {
static constexpr bool value = !any_of<values...>::value;
};
template <bool... values>
using enable_if_all_of_t = enable_if_t<all_of<values...>::value>;
template <typename T, typename... Ts>
using disable_if_contains_t =
enable_if_all_of_t<(!std::is_same<T, decay_t<Ts>>::value)...>;
template <typename Function, typename... Ts>
void apply(Function function, Ts&&... ts) {
// https://stackoverflow.com/questions/13978916/inserting-a-variadic-argument-list-into-a-vector
// Creates a dummy array, so that each function call is evaluated in order.
// `(function(), 0)` is because `function` should (!) return `void`, so
// according to the comma operator, it is evaluated and its result (`void`)
// is discarded. Then the zero is evaluated and used as an element in the
// array. The first zero ensures the array is not empty.
int _[]{0, (function(std::forward<Ts>(ts)), 0)...};
(void)_;
}
template <typename... Ts, typename Function, typename Accessor>
auto unpack(Function function, Accessor accessor)
-> decltype(function(std::declval<Ts>()...)) {
return unpack<Ts...>(
std::move(function),
std::move(accessor),
typename MakeIndices<sizeof...(Ts)>::indices());
}
template <typename... Ts, typename Function, typename Accessor, size_t... Is>
auto unpack(Function function, Accessor accessor, Indices<Is...>)
-> decltype(function(std::declval<Ts>()...)) {
return function(accessor.template operator()<Ts>(Is)...);
}
} // namespace torch