| import math |
| |
| import torch |
| from torch.autograd import Variable |
| |
| from .module import Module |
| |
| |
| class Linear(Module): |
| """Applies a linear transformation to the incoming data, y = Ax + b |
| The input is a 2D mini-batch of samples, each of size in_features |
| The output will be a 2D Tensor of size mini-batch x out_features |
| |
| Args: |
| in_features: size of each input sample |
| out_features: size of each output sample |
| Input Shape: [*, in_features] : Input can be of shape minibatch x in_features |
| Output Shape:[*, out_features] : Output is of shape minibatch x out_features |
| Members: |
| weight: the learnable weights of the module of shape (out_features x in_features) |
| bias: the learnable bias of the module of shape (out_features) |
| Examples: |
| >>> m = nn.Linear(20, 30) |
| >>> input = autograd.Variable(torch.randn(128, 20)) |
| >>> output = m(input) |
| >>> print(output.size()) |
| """ |
| def __init__(self, in_features, out_features): |
| self.in_features = in_features |
| self.out_features = out_features |
| |
| super(Linear, self).__init__( |
| weight=torch.Tensor(out_features, in_features), |
| bias=torch.Tensor(out_features) |
| ) |
| self.reset_parameters() |
| |
| def reset_parameters(self): |
| stdv = 1./math.sqrt(self.weight.size(1)) |
| self.weight.data.uniform_(-stdv, stdv) |
| self.bias.data.uniform_(-stdv, stdv) |
| |
| def forward(self, input): |
| return self._backend.Linear()(input, self.weight, self.bias) |
| |
| |
| # TODO: Bilinear |
| # TODO: PartialLinear - maybe in sparse? |