| import torch |
| from torch.autograd import Variable |
| |
| from .module import Module |
| |
| |
| class Threshold(Module): |
| """Thresholds each element of the input Tensor |
| Threshold is defined as: |
| y = x if x >= threshold |
| value if x < threshold |
| Args: |
| threshold: The value to threshold at |
| value: The value to replace with |
| inplace: can optionally do the operation in-place |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| Tensor of same dimension and shape as the input |
| Examples: |
| >>> m = nn.Threshold(0.1, 20) |
| >>> input = Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, threshold, value, inplace=False): |
| super(Threshold, self).__init__() |
| self.threshold = threshold |
| self.value = value |
| self.inplace = inplace |
| # TODO: check in THNN (if inplace == True, then assert value <= threshold) |
| |
| def forward(self, input): |
| return self._backend.Threshold(self.threshold, self.value, self.inplace)(input) |
| |
| |
| class ReLU(Threshold): |
| """Applies the rectified linear unit function element-wise ReLU(x)= max(0,x) |
| Args: |
| inplace: can optionally do the operation in-place |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: relu.png |
| Examples: |
| >>> m = nn.ReLU() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, inplace=False): |
| super(ReLU, self).__init__(0, 0, inplace) |
| |
| |
| class RReLU(Module): |
| def __init__(self, lower=1./8, upper=1./3, inplace=False): |
| super(RReLU, self).__init__() |
| self.lower = lower |
| self.upper = upper |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return self._backend.RReLU(self.lower, self.upper, self.train, |
| self.inplace)(input) |
| |
| |
| class Hardtanh(Module): |
| """Applies the HardTanh function element-wise |
| HardTanh is defined as: |
| f(x) = +1, if x > 1 |
| f(x) = -1, if x < -1 |
| f(x) = x, otherwise |
| The range of the linear region [-1, 1] can be adjusted |
| Args: |
| min_value: minimum value of the linear region range |
| max_value: maximum value of the linear region range |
| inplace: can optionally do the operation in-place |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: htanh.png |
| Examples: |
| >>> m = nn.HardTanh(-2, 2) |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, min_value=-1, max_value=1, inplace=False): |
| super(Hardtanh, self).__init__() |
| self.min_val = min_value |
| self.max_val = max_value |
| self.inplace = inplace |
| assert self.max_val > self.min_val |
| |
| def forward(self, input): |
| return self._backend.Hardtanh(self.min_val, self.max_val, self.inplace)(input) |
| |
| |
| class ReLU6(Hardtanh): |
| """Applies the element-wise function ReLU6(x) = min( max(0,x), 6) |
| Args: |
| inplace: can optionally do the operation in-place |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: relu6.png |
| Examples: |
| >>> m = nn.ReLU6() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, inplace=False): |
| super(ReLU6, self).__init__(0, 6, inplace) |
| |
| |
| class Sigmoid(Module): |
| """Applies the element-wise function sigmoid(x) = 1 / ( 1 + exp(-x)) |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: sigmoid.png |
| Examples: |
| >>> m = nn.Sigmoid() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| return self._backend.Sigmoid()(input) |
| |
| |
| class Tanh(Module): |
| """Applies element-wise, Tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x)) |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: tanh.png |
| Examples: |
| >>> m = nn.Tanh() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| return self._backend.Tanh()(input) |
| |
| |
| class ELU(Module): |
| """Applies element-wise, ELU(x) = max(0,x) + min(0, alpha * (exp(x) - 1)) |
| Args: |
| alpha: the alpha value for the ELU formulation. Default: 1.0 |
| inplace: can optionally do the operation in-place |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: elu.png |
| Examples: |
| >>> m = nn.ELU() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, alpha=1., inplace=False): |
| super(ELU, self).__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return self._backend.ELU(self.alpha, self.inplace)(input) |
| |
| |
| class Hardshrink(Module): |
| """Applies the hard shrinkage function element-wise |
| Hardshrink is defined as f(x) = x, if x > lambda |
| f(x) = x, if x < -lambda |
| f(x) = 0, otherwise |
| Args: |
| lambd: the lambda value for the Hardshrink formulation. Default: 0.5 |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: hshrink.png |
| Examples: |
| >>> m = nn.Hardshrink() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, lambd=0.5): |
| super(Hardshrink, self).__init__() |
| self.lambd = lambd |
| |
| def forward(self, input): |
| return self._backend.Hardshrink(self.lambd)(input) |
| |
| |
| class LeakyReLU(Module): |
| """Applies element-wise, f(x) = max(0, x) + negative_slope * min(0, x) |
| Args: |
| negative_slope: Controls the angle of the negative slope. Default: 1e-2 |
| inplace: can optionally do the operation in-place |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Examples: |
| >>> m = nn.LeakyReLU(0.1) |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, negative_slope=1e-2, inplace=False): |
| super(LeakyReLU, self).__init__() |
| self.negative_slope = negative_slope |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return self._backend.LeakyReLU(self.negative_slope, self.inplace)(input) |
| |
| |
| class LogSigmoid(Module): |
| """Applies element-wise LogSigmoid(x) = log( 1 / (1 + exp(-x_i))) |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: logsigmoid.png |
| Examples: |
| >>> m = nn.LogSigmoid() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| return self._backend.LogSigmoid()(input) |
| |
| |
| class Softplus(Module): |
| """Applies element-wise SoftPlus(x) = 1/beta * log(1 + exp(beta * x_i)) |
| SoftPlus is a smooth approximation to the ReLU function and can be used |
| to constrain the output of a machine to always be positive. |
| For numerical stability the implementation reverts to the linear function |
| for inputs above a certain value. |
| Args: |
| beta: the beta value for the Softplus formulation. Default: 1 |
| threshold: values above this revert to a linear function. Default: 20 |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: softplus.png |
| Examples: |
| >>> m = nn.Softplus() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, beta=1, threshold=20): |
| super(Softplus, self).__init__() |
| self.beta = beta |
| self.threshold = threshold |
| |
| def forward(self, input): |
| return self._backend.Softplus(self.beta, self.threshold)(input) |
| |
| |
| class Softshrink(Module): |
| """Applies the soft shrinkage function elementwise |
| SoftShrinkage operator is defined as: |
| f(x) = x-lambda, if x > lambda > f(x) = x+lambda, if x < -lambda |
| f(x) = 0, otherwise |
| Args: |
| lambd: the lambda value for the Softshrink formulation. Default: 0.5 |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: sshrink.png |
| Examples: |
| >>> m = nn.Softshrink() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, lambd=0.5): |
| super(Softshrink, self).__init__() |
| self.lambd = lambd |
| |
| def forward(self, input): |
| return self._backend.Softshrink(self.lambd)(input) |
| |
| |
| class PReLU(Module): |
| """Applies element-wise the function PReLU(x) = max(0,x) + a * min(0,x) |
| Here "a" is a learnable parameter. |
| When called without arguments, nn.PReLU() uses a single parameter "a" |
| across all input channels. If called with nn.PReLU(nChannels), a separate |
| "a" is used for each input channel. |
| Note that weight decay should not be used when learning "a" for good |
| performance. |
| Args: |
| num_parameters: number of "a" to learn. Default: 1 |
| init: the initial value of "a". Default: 0.25 |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: prelu.png |
| Examples: |
| >>> m = nn.PReLU() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def __init__(self, num_parameters=1, init=0.25): |
| self.num_parameters = num_parameters |
| super(PReLU, self).__init__( |
| weight=torch.Tensor(num_parameters).fill_(init) |
| ) |
| |
| def forward(self, input): |
| return self._backend.PReLU()(input, self.weight) |
| |
| |
| class Softsign(Module): |
| """Applies element-wise, the function Softsign(x) = x / (1 + |x|) |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Image: softsign.png |
| Examples: |
| >>> m = nn.Softsign() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| return self._backend.Softsign()(input) |
| |
| |
| class Tanhshrink(Module): |
| """Applies element-wise, Tanhshrink(x) = x - Tanh(x) |
| Input Shape: Any : Tensor of any size and dimension |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input |
| Examples: |
| >>> m = nn.Tanhshrink() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| tanh = self._backend.Tanh()(input) |
| return input - tanh |
| |
| |
| class Softmin(Module): |
| """Applies the Softmin function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range (0,1) and sum to 1 |
| Softmin(x) = exp(-x_i - shift) / sum_j exp(-x_j - shift) |
| where shift = max_i - x_i |
| Input Shape: [ * , * ] : 2D Tensor of any size |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input, with |
| values in the range [0, 1] |
| Image: softmin.png |
| Examples: |
| >>> m = nn.Softmin() |
| >>> input = autograd.Variable(torch.randn(2, 3)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| return self._backend.Softmin()(input) |
| |
| |
| class Softmax(Module): |
| """Applies the Softmax function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range (0,1) and sum to 1 |
| |
| Softmax is defined as f_i(x) = exp(x_i - shift) / sum_j exp(x_j - shift) |
| where shift = max_i x_i |
| |
| Input Shape: [ * , * ] : 2D Tensor of any size |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| Image: softmax.png |
| Notes: |
| Note that this module doesn't work directly with NLLLoss, |
| which expects the Log to be computed between the Softmax and itself. |
| Use Logsoftmax instead (it's faster). |
| Examples: |
| >>> m = nn.Softmax() |
| >>> input = autograd.Variable(torch.randn(2, 3)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| assert input.dim() == 2, 'Softmax requires a 2D tensor as input' |
| return self._backend.Softmax()(input) |
| |
| |
| class Softmax2d(Module): |
| """Applies SoftMax over features to each spatial location |
| When given an image of Channels x Height x Width, it will |
| apply Softmax to each location [Channels, h_i, w_j] |
| |
| Input Shape: [ * , * , * , * ] : 4D Tensor of any size |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| Examples: |
| >>> m = nn.Softmax2d() |
| >>> # you softmax over the 2nd dimension |
| >>> input = autograd.Variable(torch.randn(2, 3, 12, 13)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| assert input.dim() == 4, 'Softmax2d requires a 4D tensor as input' |
| return self._backend.Softmax()(input) |
| |
| class LogSoftmax(Module): |
| """Applies the Log(Softmax(x)) function to an n-dimensional input Tensor. |
| The LogSoftmax formulation can be simplified as |
| f_i(x) = log(1 / a * exp(x_i)) where a = sum_j exp(x_j) . |
| Input Shape: [ * , * ] : 2D Tensor of any size |
| Output Shape: Same : Output has the same shape as input |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [-inf, 0) |
| Image: logsoftmax.png |
| Examples: |
| >>> m = nn.LogSoftmax() |
| >>> input = autograd.Variable(torch.randn(2, 3)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| def forward(self, input): |
| return self._backend.LogSoftmax()(input) |
| |
| |
| |
| # TODO: RReLU |