blob: 2e98eba77ae32c7293cf9bf4aaeea8f9277463f2 [file] [log] [blame]
#pragma once
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/stack.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/tracer.h>
#include <torch/csrc/utils/auto_gil.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/six.h>
#include <ATen/core/function_schema.h>
#include <c10/util/Exception.h>
#include <algorithm>
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
// The visibility attribute is to avoid a warning about storing a field in the
// struct that has a different visibility (from pybind) than the struct.
#ifdef _WIN32
#define VISIBILITY_HIDDEN
#else
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#endif
namespace torch {
namespace jit {
// error reporting: when reporting user-caused errors, these functions should
// not use AT_ERROR macros, since these macros add stack trace information
// that is confusing to display to the end user since it always reports
// locations in libtorch code rather than user code.
using tracer::TypedStack;
struct TypedIValue : public std::pair<IValue, TypePtr> {
using pair::pair;
IValue& ivalue() {
return this->first;
}
TypePtr& type() {
return this->second;
}
};
inline TypedIValue toDictKeyIValue(py::handle key) {
if (py::isinstance<py::str>(key)) {
return TypedIValue(
ConstantString::create(py::cast<std::string>(key)),
StringType::create());
} else if (py::isinstance<py::int_>(key)) {
return TypedIValue(py::cast<int64_t>(key), IntType::create());
} else if (py::isinstance<py::float_>(key)) {
return TypedIValue(py::cast<double>(key), FloatType::create());
} else {
AT_ERROR("Dictionary inputs may only have string, int, or float keys");
}
}
inline TypedIValue trySpecializeTensorList(
std::vector<IValue>& elems,
TypePtr type) {
// Since we only call this function for trace inputs, the only options are
// generic list, and list of tensors. We do not need to check for primitive
// types.
if (!type->isSubtypeOf(TensorType::get())) {
return TypedIValue(elems, ListType::create(type));
}
std::vector<at::Tensor> tensors;
tensors.reserve(elems.size());
for (auto elem : elems) {
tensors.push_back(elem.toTensor());
}
return TypedIValue(tensors, ListType::ofTensors());
}
inline c10::optional<TypePtr> unifyOrInitializeType(
TypePtr accum,
TypePtr unify) {
if (!accum) {
return unify;
}
return unifyTypes(accum, unify);
}
MatchTypeReturn tryToInferContainerType(py::handle input);
// Try to infer the type of a Python object
// The type cannot be inferred if:
// input is a None
// input is an empty container (list, dict)
// input is an list with element types that cannot be unified
// input is an dict with key or value types that cannot be unified
inline MatchTypeReturn tryToInferType(py::handle input) {
// Try tensor types
if (THPVariable_Check(input.ptr())) {
auto tensor = py::cast<at::Tensor>(input);
if (tensor.is_sparse()) {
return MatchTypeReturn("Sparse tensors not supported");
}
if (tensor.is_mkldnn()) {
// mkldnn tensor as opaque tensor doesn't have strides, so we can
// not create a CompleteTensorType
return MatchTypeReturn(DimensionedTensorType::create(tensor));
}
// TODO: maybe unshape this type if this is used for script instead of
// tracing
return MatchTypeReturn(CompleteTensorType::create(tensor));
}
if (input.is(py::none())) {
return MatchTypeReturn("Cannot infer type of a None value");
}
// Try basic types first
if (py::isinstance<py::bool_>(input)) {
return MatchTypeReturn(BoolType::get());
} else if (py::isinstance<py::int_>(input)) {
return MatchTypeReturn(IntType::get());
} else if (py::isinstance<py::float_>(input)) {
return MatchTypeReturn(FloatType::get());
} else if (py::isinstance<py::str>(input)) {
return MatchTypeReturn(StringType::get());
} else if (THPLayout_Check(input.ptr())) {
return MatchTypeReturn(IntType::get());
} else if (THPDevice_Check(input.ptr())) {
return MatchTypeReturn(DeviceObjType::get());
} else if (THPDtype_Check(input.ptr())) {
return MatchTypeReturn(IntType::get());
}
// Try container types
return tryToInferContainerType(input);
}
inline MatchTypeReturn tryToInferContainerType(py::handle input) {
if (six::isTuple(input)) {
py::tuple tuple = py::cast<py::tuple>(input);
std::vector<TypePtr> element_types;
element_types.reserve(tuple.size());
for (py::handle elem : tuple) {
auto type_match = tryToInferType(elem);
if (type_match.type) {
element_types.push_back(*type_match.type);
} else {
// Forward error message along
return type_match.errMsg;
}
}
return MatchTypeReturn(TupleType::create(element_types));
} else if (PyDict_Check(input.ptr())) {
// Check to make sure we can generate useful input/output types
auto dict = py::cast<py::dict>(input);
size_t len = py::len(dict);
if (!len) {
return MatchTypeReturn("Dictionary inputs must have entries");
}
TypePtr key_type = nullptr;
TypePtr value_type = nullptr;
for (auto entry : dict) {
// Try to infer the key type and unify it with the existing one
auto entry_key_type_match = tryToInferType(entry.first);
if (!entry_key_type_match.type) {
return entry_key_type_match.errMsg;
}
auto unified_key =
unifyOrInitializeType(key_type, *entry_key_type_match.type);
if (!unified_key) {
return MatchTypeReturn(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
key_type->python_str(),
" and ",
(*entry_key_type_match.type)->python_str()));
}
// Try to infer the value type and unify it with the existing one
auto entry_value_type_match = tryToInferType(entry.second);
if (!entry_value_type_match.type) {
return entry_value_type_match.errMsg;
}
auto unified_value =
unifyOrInitializeType(value_type, *entry_value_type_match.type);
if (!unified_value) {
return MatchTypeReturn(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
value_type->python_str(),
" and ",
(*entry_value_type_match.type)->python_str()));
}
key_type = *unified_key;
value_type = *unified_value;
}
return MatchTypeReturn(DictType::create(key_type, value_type));
} else if (PyList_Check(input.ptr())) {
auto list = py::cast<py::list>(input);
size_t len = py::len(list);
if (!len) {
return MatchTypeReturn("List trace inputs must have elements");
}
TypePtr element_type = nullptr;
for (auto elem : list) {
auto element_type_match = tryToInferType(elem);
if (!element_type_match.type) {
return MatchTypeReturn(c10::str(
"Could not infer type of list element: ",
element_type_match.errMsg));
}
auto unified_type =
unifyOrInitializeType(element_type, *element_type_match.type);
if (!unified_type) {
return MatchTypeReturn(c10::str(
"List inputs to traced functions must have consistent element type. Found ",
element_type->python_str(),
" and ",
(*element_type_match.type)->python_str()));
}
element_type = *unified_type;
}
return MatchTypeReturn(ListType::create(element_type));
} else {
return MatchTypeReturn(c10::str(
"Only tensors and (possibly nested) tuples of tensors, lists, or dicts",
"are supported ",
"as inputs or outputs of traced functions",
", but instead got value of type ",
py::str(input.get_type().attr("__name__")),
".",
"\nValue: ",
py::repr(input)));
}
}
inline IValue toIValue(
py::handle obj,
const TypePtr& type,
c10::optional<int32_t> N = c10::nullopt);
inline bool isTraceableType(TypePtr type) {
if (type->isSubtypeOf(TensorType::get())) {
return true;
}
if (auto list_type = type->cast<ListType>()) {
return isTraceableType(list_type->getElementType());
}
if (auto tuple_type = type->cast<TupleType>()) {
return std::all_of(
tuple_type->elements().begin(),
tuple_type->elements().end(),
[](TypePtr element_type) { return isTraceableType(element_type); });
}
if (auto dict_type = type->cast<DictType>()) {
return isTraceableType(dict_type->getValueType());
}
return false;
}
inline TypedIValue toTraceableIValue(py::handle input) {
auto match = tryToInferType(input);
if (!match.type) {
AT_ERROR(
"Tracer cannot infer type of ", py::str(input), "\n:", match.errMsg);
}
auto type = *match.type;
if (isTraceableType(type)) {
return TypedIValue(toIValue(input, type), type);
}
AT_ERROR(
"Type '",
type->python_str(),
"' cannot be traced. Only Tensors and (possibly nested) Lists, Dicts, and"
" Tuples of Tensors can be traced");
}
inline IValue toIValue(py::handle input) {
return toTraceableIValue(input).ivalue();
}
inline Stack toStack(const py::tuple& inputs) {
return toIValue(inputs).toTuple()->elements();
}
inline TypedStack toTypedStack(const py::tuple& inputs) {
auto info = toTraceableIValue(inputs);
return TypedStack(
info.ivalue().toTuple()->elements(), info.type()->expect<TupleType>());
}
inline IValue createGenericList(py::handle obj, const TypePtr& elem_type) {
c10::List<IValue> elems;
for (auto elem : obj) {
elems.push_back(toIValue(elem, elem_type));
}
return IValue(std::move(elems));
}
inline IValue createGenericDict(
py::handle obj,
const TypePtr& key_type,
const TypePtr& value_type) {
c10::impl::GenericDict elems = c10::impl::GenericDict();
elems.reserve(py::len(obj));
for (auto key : obj) {
elems.insert(
toIValue(key, key_type), toIValue(obj[key], value_type));
}
return IValue(std::move(elems));
}
inline IValue toIValue(
py::handle obj,
const TypePtr& type,
c10::optional<int32_t> N) {
switch (type->kind()) {
case TypeKind::TensorType:
case TypeKind::AutogradZeroTensorType:
case TypeKind::DimensionedTensorType:
case TypeKind::ProfiledTensorType:
case TypeKind::CompleteTensorType: {
auto var = py::cast<autograd::Variable>(obj);
if (var.is_sparse()) {
AT_ERROR("sparse tensors not supported");
}
return var;
}
case TypeKind::FloatType:
return py::cast<double>(obj);
case TypeKind::IntType:
return py::cast<int64_t>(obj);
case TypeKind::NoneType:
if (!obj.is_none()) {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to None"));
}
return {};
case TypeKind::BoolType:
return py::cast<bool>(obj);
case TypeKind::TupleType: {
py::tuple tuple = py::cast<py::tuple>(obj);
size_t tuple_size = tuple.size();
auto tuple_type = type->cast<TupleType>();
const auto& elem_types = tuple_type->elements();
if (elem_types.size() != tuple_size) {
throw py::cast_error(c10::str(
"Object ",
py::str(obj),
" had a different number of elements than type ",
type->python_str()));
}
std::vector<IValue> values;
values.reserve(tuple_size);
for (size_t i = 0; i < tuple_size; ++i) {
values.push_back(toIValue(tuple[i], elem_types[i]));
}
return c10::ivalue::Tuple::create(std::move(values), tuple_type);
}
case TypeKind::StringType:
return ConstantString::create(py::cast<std::string>(obj));
case TypeKind::DeviceObjType: {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return device->device;
}
case TypeKind::ListType: {
const auto& elem_type = type->expect<ListType>()->getElementType();
switch (elem_type->kind()) {
// allows single int/float to be broadcasted to a fixed size list
case TypeKind::IntType:
if (!N || !py::isinstance<py::int_>(obj)) {
return py::cast<std::vector<int64_t>>(obj);
} else {
double value = py::cast<int64_t>(obj);
std::vector<double> repeated(*N, value);
return repeated;
}
case TypeKind::FloatType:
if (!N || !py::isinstance<py::float_>(obj)) {
return py::cast<std::vector<double>>(obj);
} else {
double value = py::cast<double>(obj);
std::vector<double> repeated(*N, value);
return repeated;
}
case TypeKind::DimensionedTensorType:
case TypeKind::TensorType:
return py::cast<std::vector<at::Tensor>>(obj);
default:
return createGenericList(obj, elem_type);
}
}
case TypeKind::DictType: {
const auto& dict_type = type->expect<DictType>();
return createGenericDict(
obj, dict_type->getKeyType(), dict_type->getValueType());
}
case TypeKind::OptionalType: {
// check if it's a none obj since optional accepts NoneType
if (obj.is_none()) {
// check if it's a none obj since optional accepts NoneType
// return an IValue() to denote a NoneType
return {};
}
return toIValue(obj, type->expect<OptionalType>()->getElementType());
}
case TypeKind::ClassType: {
auto classType = type->expect<ClassType>();
// 1. create a bare ivalue
const size_t numAttrs = classType->numAttributes();
auto userObj = c10::ivalue::Object::create(classType, numAttrs);
// 2. copy all the contained types
for (size_t slot = 0; slot < numAttrs; slot++) {
const auto& attrType = classType->getAttribute(slot);
const auto& attrName = classType->getAttributeName(slot);
const auto& contained = py::getattr(obj, attrName.c_str());
userObj->setSlot(slot, toIValue(contained, attrType));
}
return userObj;
}
case TypeKind::NumberType:
case TypeKind::GeneratorType:
case TypeKind::VarType:
case TypeKind::FutureType:
break;
case TypeKind::FunctionType:
AT_ERROR("Function Values aren't yet supported");
}
AT_ERROR(
"Missing cases in toIValue for type: ",
type->str(),
"! File a bug report.");
}
// Small wrapper around getting the type name string from Python to make
// types easier to interpret, e.g. give the structural type for a NamedTuple
inline std::string friendlyTypeName(py::handle obj) {
if (py::isinstance<py::tuple>(obj) && py::hasattr(obj, "_fields")) {
auto field_names =
py::cast<std::vector<std::string>>(py::getattr(obj, "_fields"));
std::stringstream ss;
ss << py::str(obj.get_type().attr("__name__"));
ss << " (aka NamedTuple(";
bool first = true;
for (auto& field_name : field_names) {
if (!first) {
ss << ", ";
}
ss << field_name;
first = false;
}
ss << "))";
return ss.str();
} else {
return py::str(obj.get_type().attr("__name__"));
}
}
inline IValue argumentToIValue(
const FunctionSchema& schema,
size_t argumentPosition,
py::handle object) {
const auto& argument = schema.arguments().at(argumentPosition);
try {
return toIValue(object, argument.type(), argument.N());
} catch (const py::cast_error& error) {
throw std::runtime_error(schema.formatTypeMismatchMsg(
argument,
friendlyTypeName(object),
argumentPosition,
py::repr(object)));
}
}
inline IValue returnToIValue(const TypePtr& type, py::handle object) {
try {
return toIValue(object, type);
} catch (const py::cast_error& error) {
throw std::runtime_error(c10::str(
" expected value of type ",
type->str(),
" for return value but instead got value of type ",
py::str(object.get_type().attr("__name__")),
".",
"\nValue: ",
py::repr(object)));
}
}
inline py::object toPyObject(IValue&& ivalue) {
if (ivalue.isNone()) {
return py::none();
} else if (ivalue.isTensor()) {
auto tensor = std::move(ivalue).toTensor();
if (tensor.is_sparse()) {
AT_ERROR("sparse tensors not supported");
}
return py::cast(autograd::Variable(std::move(tensor)));
} else if (ivalue.isDouble()) {
return py::cast(std::move(ivalue).toDouble());
} else if (ivalue.isInt()) {
return py::cast(std::move(ivalue).toInt());
} else if (ivalue.isBool()) {
return py::cast(std::move(ivalue).toBool());
} else if (ivalue.isString()) {
return py::cast(std::move(ivalue).toStringRef());
} else if (ivalue.isIntList()) {
return py::cast(c10::impl::toVector(std::move(ivalue).toIntList()));
} else if (ivalue.isDoubleList()) {
return py::cast(c10::impl::toVector(std::move(ivalue).toDoubleList()));
} else if (ivalue.isBoolList()) {
return py::cast(c10::impl::toVector(std::move(ivalue).toBoolList()));
} else if (ivalue.isTensorList()) {
return py::cast(c10::impl::toVector(std::move(ivalue).toTensorList()));
} else if (ivalue.isGenericList()) {
auto list = std::move(ivalue).toGenericList();
py::list t{list.size()};
for (size_t i = 0; i < list.size(); ++i) {
t[i] = toPyObject(IValue{list.get(i)});
}
return std::move(t);
} else if (ivalue.isTuple()) {
auto tuple = std::move(ivalue).toTuple();
const auto& elements = tuple->elements();
py::tuple t{elements.size()};
for (size_t i = 0; i < elements.size(); ++i) {
t[i] = toPyObject(IValue{elements.at(i)});
}
if (tuple->type && tuple->type->schema() &&
tuple->type->schema()->name() != "") {
auto unqualName = tuple->type->basename();
auto fieldNames = fmap(tuple->type->schema()->arguments(), [](const Argument& arg) {
return arg.name();
});
return py::module::import("torch.jit")
.attr("_create_named_tuple")(
t, unqualName, fieldNames);
} else {
return std::move(t);
}
} else if (ivalue.isDevice()) {
return py::cast<py::object>(THPDevice_New(std::move(ivalue).toDevice()));
} else if (ivalue.isGenericDict()) {
auto dict = std::move(ivalue).toGenericDict();
py::dict py_dict;
for (auto& pair : dict) {
py_dict[toPyObject(IValue{pair.key()})] = toPyObject(IValue{pair.value()});
}
return std::move(py_dict);
} else if (ivalue.isObject()) {
const auto obj = std::move(ivalue).toObject();
auto& pyCu = script::CompilationUnit::_get_python_cu();
const auto classType = pyCu.get_class(c10::QualifiedName(obj->name()));
AT_ASSERT(classType);
auto pyClass =
py::module::import("torch.jit").attr("_get_script_class")(obj->name());
auto pyObj = pyClass.attr("__new__")(pyClass);
const auto numAttrs = classType->numAttributes();
for (size_t slot = 0; slot < numAttrs; slot++) {
const auto& attrName = classType->getAttributeName(slot);
IValue v = obj->getSlot(slot);
py::setattr(pyObj, attrName.c_str(), toPyObject(std::move(v)));
}
return pyObj;
} else {
AT_ERROR("Missing cases in 'toPyObject'! File a bug report.");
}
}
struct VISIBILITY_HIDDEN tuple_slice {
/*implicit*/ tuple_slice(py::tuple tup_)
: tup(std::move(tup_)), b(0), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_)
: tup(std::move(tup_)), b(b_), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_, int64_t e_)
: tup(std::move(tup_)), b(b_), e(e_) {}
py::detail::tuple_iterator begin() const {
return {tup, static_cast<pybind11::ssize_t>(b)};
}
py::detail::tuple_iterator end() const {
return {tup, static_cast<pybind11::ssize_t>(e)};
}
size_t size() const {
return e - b;
}
py::detail::tuple_accessor operator[](size_t index) const {
return {tup, static_cast<size_t>(b + index)};
}
private:
py::tuple tup;
int64_t b;
int64_t e;
};
inline Stack createStackForSchema(
const FunctionSchema& schema,
const tuple_slice& args,
const py::kwargs& kwargs,
c10::optional<IValue> self) {
size_t all_arguments = (self ? 1 : 0) + args.size() + kwargs.size();
if (all_arguments > schema.arguments().size()) {
throw std::runtime_error(c10::str(
schema.name(),
"() expected at most ",
schema.arguments().size(),
" argument(s) but received ",
all_arguments,
" argument(s). Declaration: ",
schema));
}
Stack stack;
stack.reserve(schema.arguments().size());
if (self) {
push(stack, std::move(*self));
}
// First push all positional args.
for (size_t i = 0; i < args.size(); ++i) {
// Use the type information from the schema to convert the PyObject.
push(stack, argumentToIValue(schema, stack.size(), args[i]));
}
// Now for every remaining non-positional argument in the schema, look for it
// in the kwargs dict and push it if found, or use its default value if it
// has one.
size_t consumed_kwargs = 0;
for (size_t i = stack.size(); i < schema.arguments().size(); ++i) {
const auto& arg = schema.arguments()[i];
if (kwargs.contains(arg.name().c_str())) {
push(stack, argumentToIValue(schema, i, kwargs[arg.name().c_str()]));
consumed_kwargs += 1;
} else if (arg.default_value()) {
push(stack, *arg.default_value());
} else {
throw std::runtime_error(c10::str(
schema.name(),
"() is missing value for argument '",
arg.name(),
"'. Declaration: ",
schema));
}
}
if (consumed_kwargs != kwargs.size()) {
std::vector<std::string> names;
for (const auto& kwarg : kwargs) {
names.emplace_back(py::cast<std::string>(kwarg.first));
}
schema.findErrorInKwargs(names);
}
return stack;
}
inline py::object createPyObjectForStack(Stack&& stack) {
if (stack.empty()) {
return py::none();
}
// Return a simple value and not a single-element tuple if there is only one
// return value.
if (stack.size() == 1) {
return toPyObject(std::move(stack[0]));
}
// If there is more than one return value, pop them into a py::tuple.
py::tuple return_values(stack.size());
for (size_t ret = 0; ret < return_values.size(); ++ret) {
return_values[ret] = toPyObject(std::move(stack[ret]));
}
return std::move(return_values);
}
// TODO: Remove once we clean up the GraphExecutor usage.
inline Stack evilDeprecatedBadCreateStackDoNotUse(
const py::tuple& tuple,
at::ArrayRef<Value*> inputs,
size_t reserve_extra_space = 0) {
if (tuple.size() != inputs.size()) {
AT_ERROR(
"expected " + std::to_string(inputs.size()) + " inputs, but got " +
std::to_string(tuple.size()));
}
Stack result;
result.reserve(tuple.size() + reserve_extra_space);
for (size_t i = 0; i < inputs.size(); ++i) {
result.push_back(toIValue(std::move(tuple[i]), inputs[i]->type()));
}
return result;
}
inline py::object invokeScriptFunctionFromPython(
Function& callee,
tuple_slice args,
py::kwargs kwargs,
c10::optional<IValue> self = c10::nullopt) {
auto stack = createStackForSchema(
callee.getSchema(), std::move(args), std::move(kwargs), std::move(self));
{
AutoNoGIL no_gil_guard;
callee.run(stack);
}
return toPyObject(std::move(stack.back()));
}
inline py::object invokeScriptMethodFromPython(
script::Method& callee,
tuple_slice args,
py::kwargs kwargs) {
return invokeScriptFunctionFromPython(
callee.function(),
std::move(args),
std::move(kwargs),
callee.owner().module_object());
}
inline py::object invokeOperatorFromPython(
const Operator& op,
py::args args,
py::kwargs kwargs) {
// Create a stack full of the arguments and keyword arguments.
auto stack = createStackForSchema(
op.schema(), std::move(args), std::move(kwargs), c10::nullopt);
// Invoke the operation, which puts the return values onto the stack.
op.getOperation()(stack);
return createPyObjectForStack(std::move(stack));
}
} // namespace jit
} // namespace torch