| #pragma once |
| |
| // NB: Must be at the top of file to avoid including the deprecated "math.h". |
| // https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio |
| #ifdef _MSC_VER |
| #ifndef _USE_MATH_DEFINES |
| #define _USE_MATH_DEFINES |
| #endif |
| #include <cmath> |
| #endif |
| |
| #include <torch/csrc/autograd/generated/Functions.h> |
| #include <ATen/ATen.h> |
| |
| namespace torch { |
| namespace autograd { |
| namespace generated { |
| namespace details { |
| |
| extern const char* kCudnnDoubleBackwardMsg; |
| |
| // A simple way to imperatively compute index ranges for slots |
| // that have been flattened |
| struct IndexRangeGenerator { |
| IndexRange range(size_t range_size) { |
| i += range_size; |
| return {i - range_size, i}; |
| } |
| size_t size() { return i; } |
| private: |
| size_t i = 0; |
| }; |
| |
| Tensor toNonOptFwGrad(const c10::optional<Tensor>& t); |
| Tensor toNonOptPrimal(const c10::optional<Tensor>& t); |
| Tensor toNonOptTensor(const c10::optional<Tensor>& t); |
| |
| Tensor apply_loss_reduction(const Tensor& unreduced, int64_t reduction); |
| bool any_variable_defined(const variable_list& variables); |
| void copy_range(variable_list& out, IndexRange range, const at::Tensor & t); |
| void copy_range(variable_list& out, IndexRange range, at::ArrayRef<at::Tensor> t); |
| at::Tensor copysign_tensor_self_backward(const Tensor & grad, const Tensor & self, const Tensor & result); |
| at::Tensor not_implemented(const char* name, const char* reason=""); |
| std::vector<Tensor> not_implemented_list(const char* name, const char* reason=""); |
| at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result); |
| at::Tensor maybe_multiply(const at::Tensor & t, const at::Scalar & s); |
| int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim); |
| Tensor restore_reduced_dims(const Tensor &output, IntArrayRef dims, bool keepdim); |
| Tensor scale_grad_by_count(const Tensor &grad, const Tensor &mask, IntArrayRef dims); |
| at::Tensor norm_backward(const at::Tensor & grad, const at::Tensor & self, const optional<at::Scalar> & p_, const at::Tensor & norm); |
| at::Tensor norm_backward(at::Tensor grad, const at::Tensor & self, const optional<at::Scalar> & p_, at::Tensor norm, at::IntArrayRef dim, bool keepdim); |
| Tensor norm_jvp( |
| const Tensor& self_p, const Tensor& self_t, |
| const optional<Scalar> & p_, |
| Tensor norm, |
| IntArrayRef dim, |
| bool keepdim |
| ); |
| Tensor norm_jvp(const Tensor& grad, const Tensor& self, const optional<Scalar> & p_, Tensor norm); |
| Tensor linalg_vector_norm_jvp(const Tensor& self_p, const Tensor& self_t, const Scalar& scalar_ord, Tensor norm, const at::OptionalIntArrayRef& opt_dim, bool keepdim); |
| at::Tensor linalg_vector_norm_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & ord, at::Tensor norm, const at::OptionalIntArrayRef & opt_dim, bool keepdim); |
| at::Tensor pow_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & exponent_); |
| at::Tensor pow_backward_self(at::Tensor grad, const at::Tensor & self, const at::Tensor & exponent); |
| at::Tensor pow_backward_exponent(at::Tensor grad, const at::Tensor& self, const at::Tensor& exponent, at::Tensor result); |
| at::Tensor pow_backward_exponent(at::Tensor grad, const at::Scalar & base, const at::Tensor& exponent, at::Tensor result); |
| at::Tensor angle_backward(at::Tensor grad, const at::Tensor& self); |
| at::Tensor mul_tensor_backward(Tensor grad, Tensor other, ScalarType self_st); |
| at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st); |
| at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other); |
| at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st, const c10::optional<c10::string_view>& rounding_mode); |
| at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other, const c10::optional<c10::string_view>& rounding_mode); |
| at::Tensor mvlgamma_backward(at::Tensor grad, const at::Tensor & self, int64_t p); |
| at::Tensor permute_backwards(const at::Tensor & grad, at::IntArrayRef fwd_dims); |
| at::Tensor rad2deg_backward(const at::Tensor& grad); |
| at::Tensor deg2rad_backward(const at::Tensor& grad); |
| at::Tensor unsqueeze_multiple(const at::Tensor & t, at::IntArrayRef dim, size_t n_dims); |
| at::Tensor sum_backward(const at::Tensor & grad, at::IntArrayRef sizes, at::IntArrayRef dims, bool keepdim); |
| at::Tensor nansum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dims, bool keepdim); |
| std::vector<int64_t> reverse_list(const at::IntArrayRef list); |
| at::Tensor reverse_dim(const at::Tensor& t, int64_t dim); |
| at::Tensor prod_safe_zeros_backward(const at::Tensor &grad, const at::Tensor& inp, int64_t dim); |
| at::Tensor prod_backward(const at::Tensor& grad, const at::Tensor& input, const at::Tensor& result); |
| at::Tensor prod_backward(at::Tensor grad, const at::Tensor& input, at::Tensor result, int64_t dim, bool keepdim); |
| at::Tensor solve_jvp(const Tensor& X, const Tensor& A, const Tensor& dA, const Tensor& dB); |
| at::Tensor solve_backward_self(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A); |
| at::Tensor solve_backward_A(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A, const at::Tensor & solution); |
| at::Tensor cumsum_backward(const at::Tensor & grad, int64_t dim); |
| at::Tensor logsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, at::IntArrayRef dim, bool keepdim); |
| at::Tensor logsumexp_jvp(const at::Tensor& self_p, const at::Tensor& self_t, IntArrayRef dim, bool keepdim); |
| at::Tensor logcumsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, int64_t dim); |
| at::Tensor unbind_backward(const variable_list& grads, int64_t dim); |
| at::Tensor unsqueeze_to(const at::Tensor & self, at::IntArrayRef sizes); |
| at::Tensor unsqueeze_to(const at::Tensor & self, int64_t dim, at::IntArrayRef sizes); |
| std::vector<at::Tensor> cat_tensors_backward(const at::Tensor & grad, const std::vector<std::vector<int64_t>> &sizes, const std::vector<ScalarType> &dtypes, int64_t dim); |
| at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const optional<at::Scalar>& min, const optional<at::Scalar>& max); |
| at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const at::Tensor& min, const at::Tensor& max); |
| std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(const at::Tensor& grad, const at::Tensor& self, const at::Tensor& min, const at::Tensor& max, const std::array<bool, 2>&); |
| at::Tensor clamp_jvp( |
| const Tensor& self_p, const Tensor& self_t, |
| const Tensor& min_p, const Tensor& min_t, |
| const Tensor& max_p, const Tensor& max_t |
| ); |
| at::IntArrayRef strides_or_error(const Tensor & input, c10::string_view const & input_name); |
| at::Tensor mm_mat1_backward(const Tensor & grad, const Tensor & mat2, at::IntArrayRef mat1_sizes, at::IntArrayRef mat1_strides, c10::Layout mat1_layout, const Scalar & alpha); |
| at::Tensor mm_mat2_backward(const at::Tensor & grad, const at::Tensor & mat1, at::IntArrayRef sizes, at::IntArrayRef strides, c10::Layout layout, const at::Scalar & alpha); |
| at::Tensor mm_mat1_sparse_backward(const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2, const at::Scalar& alpha); |
| at::Tensor sparse_sparse_matmul_backward(const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2,int64_t grad_order); |
| at::Tensor renorm_backward(const at::Tensor & grad, const at::Tensor & self, const at::Scalar& p, int64_t dim, const at::Scalar& maxnorm); |
| at::Tensor repeat_backward(at::Tensor grad, at::IntArrayRef repeats, at::IntArrayRef input_shape); |
| at::Tensor _fused_dropout_backward(at::Tensor grad, at::Tensor mask, double p1m); |
| at::Tensor infinitely_differentiable_native_dropout_backward(const at::Tensor& grad, const at::Tensor& mask, double scale); |
| at::Tensor native_dropout_double_backward(const at::Tensor& ggI, const at::Tensor& grad, const at::Tensor& mask, double scale); |
| at::Tensor evenly_distribute_backward(at::Tensor grad, const at::Tensor & input, const at::Tensor & value); |
| at::Tensor sgn_backward(Tensor result, Tensor grad, Tensor self); |
| at::Tensor var_backward(at::Tensor grad, const at::Tensor& self, at::OptionalIntArrayRef dim, c10::optional<int64_t> correction, bool keepdim); |
| at::Tensor var_jvp(const at::Tensor& self_t, const at::Tensor& self_p, const at::Tensor& result, at::OptionalIntArrayRef dim_opt, c10::optional<int64_t> correction_opt, bool keepdim); |
| at::Tensor std_backward(const at::Tensor& result, const at::Tensor& grad, const at::Tensor& self, at::OptionalIntArrayRef dim, c10::optional<int64_t> correction, bool keepdim); |
| at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, at::IntArrayRef dim, bool keepdim); |
| at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, int64_t numel); |
| at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor& self, const at::Tensor& r1, const at::Tensor& r2, at::OptionalIntArrayRef dim, c10::optional<int64_t> correction, bool keepdim, bool is_std); |
| at::Tensor masked_scatter_backward(const at::Tensor & grad, const at::Tensor & mask, at::IntArrayRef sizes); |
| at::Tensor cholesky_backward(const at::Tensor& grad, bool upper, const at::Tensor& L); |
| at::Tensor cholesky_jvp(const at::Tensor& input_tangent, const at::Tensor& L, bool upper); |
| at::Tensor cholesky_inverse_backward(at::Tensor grad, at::Tensor L, bool upper, at::Tensor inverse); |
| at::Tensor cholesky_inverse_jvp(const at::Tensor& F, const at::Tensor& dF, const at::Tensor& X, bool upper); |
| Tensor pinv_jvp( |
| const Tensor& A, |
| const Tensor& pinvA, |
| const Tensor& dA |
| ); |
| Tensor pinv_backward( |
| const Tensor& grad, |
| const Tensor& pinvA, |
| const Tensor& A |
| ); |
| at::Tensor split_with_sizes_backward(const std::vector<torch::autograd::Variable> &grads, |
| IntArrayRef split_sizes, int64_t dim, IntArrayRef sizes, const at::TensorOptions &options); |
| at::Tensor split_backward(const std::vector<torch::autograd::Variable> &grads, int64_t split_size, int64_t dim, at::IntArrayRef sizes, const at::TensorOptions &options); |
| at::Tensor max_pool_double_backward(const at::Tensor & grad, const at::Tensor & indices, int dim); |
| at::Tensor glu_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, int64_t dim); |
| at::Tensor glu_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, int64_t dim); |
| at::Tensor infinitely_differentiable_silu_backward(const at::Tensor& grad_output, const at::Tensor& input); |
| at::Tensor infinitely_differentiable_mish_backward(const at::Tensor& grad_output, const at::Tensor& input); |
| Tensor infinitely_differentiable_logit_backward(const Tensor& grad, const Tensor& self, c10::optional<double> eps); |
| at::Tensor kl_div_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, bool log_target); |
| Tensor binary_cross_entropy_target_backward( |
| const Tensor& grad, |
| const Tensor& self, |
| const Tensor& target, |
| const c10::optional<Tensor>& weight, |
| int64_t reduction); |
| Tensor binary_cross_entropy_double_backward_target( |
| const Tensor& grad, |
| const Tensor& grad_output, |
| const Tensor& self, |
| const Tensor& target, |
| const c10::optional<Tensor>& weight, |
| int64_t reduction |
| ); |
| at::Tensor binary_cross_entropy_with_logits_target_backward(const at::Tensor& grad_output, const at::Tensor& self, const at::Tensor& target, const c10::optional<at::Tensor>& weight, const c10::optional<at::Tensor>& pos_weight, int64_t reduction); |
| at::Tensor log_sigmoid_double_backward(const at::Tensor & grad, const at::Tensor & input); |
| at::Tensor softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output); |
| at::Tensor binary_cross_entropy_double_backward(const at::Tensor & grad_output, const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction); |
| at::Tensor binary_cross_entropy_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction); |
| at::Tensor l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor smooth_l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta); |
| at::Tensor smooth_l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta); |
| at::Tensor huber_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double delta); |
| at::Tensor huber_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double delta); |
| at::Tensor mse_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, int64_t reduction); |
| at::Tensor mse_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor soft_margin_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor soft_margin_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor softplus_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Scalar& beta, const at::Scalar& threshold); |
| at::Tensor logdet_backward(const at::Tensor & grad, const at::Tensor& self, const at::Tensor& logdet); |
| at::Tensor slogdet_backward(const at::Tensor& grad_logabsdet, const at::Tensor& self, const at::Tensor& signdet, const at::Tensor& logabsdet); |
| at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self); |
| at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self); |
| at::Tensor sparse_constructor_values_backward(const at::Tensor& sparse_grad_out, const at::Tensor& indices); |
| at::Tensor embedding_dense_double_backward(const at::Tensor & grad, const at::Tensor & indices, int64_t padding_idx); |
| at::Tensor index_backward(at::Tensor zeros_like_self, const torch::List<c10::optional<Tensor>>& indices, const at::Tensor& grad); |
| at::Tensor _cudnn_ctc_loss_backward(const at::Tensor& grad_out, const at::Tensor& loss, const at::Tensor& raw_grad, bool zero_infinity); |
| at::Tensor elu_double_backward(const Tensor& grad, const Tensor& grad_output, const Scalar& alpha, const Scalar& scale, const Scalar& input_scale, bool is_result, const Tensor& self_or_result); |
| |
| Tensor svd_backward(const Tensor& gU, |
| const Tensor& gS, |
| const Tensor& gVh, |
| const Tensor& U, |
| const Tensor& S, |
| const Tensor& Vh); |
| |
| std::tuple<Tensor, Tensor, Tensor> linalg_svd_jvp(const Tensor& dA, |
| const Tensor& U, |
| const Tensor& S, |
| const Tensor& Vh, |
| const bool full_matrices); |
| Tensor slice_backward_wrapper( |
| const at::Tensor& grad, |
| const c10::IntArrayRef& input_sizes, |
| int64_t dim, |
| c10::optional<int64_t> start, |
| c10::optional<int64_t> end, |
| int64_t step); |
| std::tuple<Tensor, Tensor> linalg_eig_jvp(const Tensor& dA, |
| const Tensor& L, |
| const Tensor& V, |
| const bool is_hermitian); |
| Tensor linalg_eig_backward(const Tensor& gL, |
| const Tensor& gV, |
| const Tensor& L, |
| const Tensor& V, |
| const bool is_hermitian, |
| const bool symeig_eigenvectors=true); |
| Tensor linalg_lstsq_jvp( |
| const Tensor& A, |
| const Tensor& B, |
| const Tensor& dA, |
| const Tensor& dB |
| ); |
| std::tuple<Tensor, Tensor> triangular_solve_backward( |
| const Tensor & grad_x, const Tensor & grad_m, |
| const Tensor & b, const Tensor & a, const Tensor & x, |
| const bool upper, const bool transpose, const bool unitriangular, |
| std::array<bool, 2> output_mask); |
| Tensor triangular_solve_jvp( |
| const Tensor& X, const Tensor& A, |
| const Tensor& dA, const Tensor& dB, |
| const bool upper, |
| const bool transpose, |
| const bool unitriangular |
| ); |
| Tensor linalg_solve_triangular_forward_AD( |
| const Tensor& A_t, |
| const Tensor& B_t, |
| const Tensor& A, |
| const Tensor& X, |
| const bool upper, |
| const bool left, |
| const bool unitriangular); |
| std::tuple<Tensor, Tensor> linalg_solve_triangular_backward( |
| const Tensor& grad, |
| const Tensor& A, |
| const Tensor& X, |
| const bool upper, |
| const bool left, |
| const bool unitriangular, |
| std::array<bool, 2> output_mask); |
| std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(const Tensor& grad_out, const Tensor& i1, const Tensor& i2, const Tensor& i3, |
| IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, |
| IntArrayRef sumdim, std::array<bool, 3> grad_mask); |
| std::tuple<Tensor, Tensor> linalg_qr_jvp(const Tensor& dA, const Tensor& Q, const Tensor& R, |
| const c10::string_view mode); |
| Tensor linalg_qr_backward(const Tensor& gQ, const Tensor& gR, const Tensor& Q, const Tensor& R, const c10::string_view mode); |
| Tensor eig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self, |
| bool eigenvectors, const Tensor& lambda, const Tensor& v); |
| Tensor linalg_matrix_exp_differential(const Tensor& self, const Tensor& grad, bool adjoint); |
| Tensor linalg_det_backward(const Tensor & grad, const Tensor& self, const Tensor& det); |
| std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward( |
| const Tensor & input, |
| const c10::optional<Tensor> & gamma, |
| const Tensor & ggI, |
| const Tensor & ggG, |
| const Tensor & ggB, |
| const Tensor & gO, |
| const c10::optional<Tensor> & running_mean, |
| const c10::optional<Tensor> & running_var, |
| bool training, |
| double eps, |
| const c10::optional<Tensor> & save_mean, |
| const c10::optional<Tensor> & save_invstd, |
| std::array<bool,3> output_mask); |
| std::tuple<Tensor, Tensor> _euclidean_dist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, const Tensor & res); |
| Tensor kl_div_target_backward(Tensor grad_output, Tensor self, Tensor target, int64_t reduction, bool log_target); |
| Tensor fft_backward(const Tensor& self, const Tensor& grad, int64_t signal_ndim, |
| bool complex_input, bool complex_output, |
| bool inverse, IntArrayRef checked_signal_sizes, |
| int64_t normalization, bool onesided, |
| IntArrayRef output_sizes); |
| Tensor fft_r2c_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization, |
| bool onesided, int64_t last_dim_size); |
| Tensor fft_c2r_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization); |
| Tensor constant_pad_nd_backward(const Tensor& grad, IntArrayRef pad); |
| std::tuple<Tensor, Tensor> cholesky_solve_backward( |
| const Tensor& grad_x, const Tensor& self, |
| const Tensor& input2, const Tensor& result, const bool upper); |
| Tensor cholesky_solve_jvp( |
| const Tensor& X, |
| const Tensor& U, |
| const Tensor& dU, |
| const Tensor& dB, |
| const bool upper |
| ); |
| std::tuple<Tensor, Tensor, Tensor> |
| infinitely_differentiable_native_group_norm_backward( |
| const Tensor& dY, |
| const Tensor& dmean, |
| const Tensor& drstd, |
| const Tensor& X, |
| const Tensor& mean, |
| const Tensor& rstd, |
| const c10::optional<Tensor>& gamma, |
| int64_t N, |
| int64_t C, |
| int64_t HxW, |
| int64_t group, |
| double eps, |
| std::array<bool, 3> grad_input_mask); |
| Tensor prelu_jvp(const Tensor& x, const Tensor& dx, const Tensor& w, const Tensor& dw); |
| std::tuple<Tensor, Tensor, Tensor> prelu_double_backward( |
| const Tensor & grad_grad_input, |
| const Tensor & grad_grad_weight, |
| const Tensor & grad_out, |
| const Tensor & input_, |
| const Tensor & weight_); |
| Tensor gelu_double_backward( |
| const Tensor & ggI, |
| const Tensor & gO, |
| const Tensor & input, |
| c10::string_view approximate); |
| Tensor as_strided_backward(Tensor grad, TensorGeometry input_geometry, IntArrayRef sizes, IntArrayRef strides, optional<int64_t> storage_offset_); |
| Tensor as_strided_scatter_backward(Tensor grad, TensorGeometry input_geometry, TensorGeometry src_geometry, IntArrayRef sizes, IntArrayRef strides, optional<int64_t> storage_offset); |
| std::tuple<Tensor, Tensor> atan2_backward(const Tensor& grad, const Tensor& self, const Tensor& other, std::array<bool, 2> output_mask); |
| std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward( |
| const Tensor & input, |
| const c10::optional<Tensor> & gamma, |
| const Tensor & ggI, |
| const Tensor & ggG, |
| const Tensor & ggB, |
| const Tensor & gO, |
| const Tensor & save_mean, |
| const Tensor & save_invstd, |
| IntArrayRef normalized_shape, |
| std::array<bool,3> output_mask); |
| |
| std::tuple<Tensor, Tensor> householder_product_backward(const Tensor& grad, const Tensor& result, const Tensor& input, const Tensor& tau); |
| Tensor householder_product_jvp( |
| const Tensor& dV, |
| const Tensor& dtau, |
| const Tensor& prod, |
| const Tensor& V, |
| const Tensor& tau |
| ); |
| std::tuple<Tensor, Tensor> polar_backward( |
| const Tensor& grad, |
| const Tensor& result); |
| Tensor i1_backward( |
| const Tensor& grad, |
| const Tensor& self, |
| const Tensor& result); |
| Tensor i1e_backward( |
| const Tensor& grad, |
| const Tensor& self, |
| const Tensor& result); |
| std::tuple<Tensor, Tensor> lu_solve_backward( |
| const Tensor& grad, |
| const Tensor& X, |
| const Tensor& LU_data, |
| const Tensor& LU_pivots, |
| const std::array<bool, 2>& grad_input_mask |
| ); |
| Tensor lu_solve_jvp( |
| const Tensor& X, |
| const Tensor& LU_data, |
| const Tensor& dLU_data, |
| const Tensor& dB, |
| const Tensor& LU_pivots |
| ); |
| Tensor lu_unpack_backward( |
| const Tensor& L_grad, |
| const Tensor& U_grad, |
| const int64_t m, |
| const int64_t n |
| ); |
| |
| Tensor _det_lu_based_helper_backward( |
| const Tensor& det_grad, |
| const Tensor& det, |
| const Tensor& self, |
| const Tensor& lu, |
| const Tensor& pivs |
| ); |
| |
| std::tuple<Tensor, Tensor> linalg_lstsq_backward( |
| const Tensor& grad, |
| const Tensor& A, |
| const Tensor& B, |
| const c10::optional<double> rcond, |
| const c10::optional<c10::string_view> driver, |
| const std::array<bool, 2>& grad_input_mask |
| ); |
| |
| Tensor linalg_lu_backward( |
| const Tensor& L_grad, |
| const Tensor& U_grad, |
| const Tensor& P, |
| const Tensor& L, |
| const Tensor& U, |
| const bool pivot); |
| |
| std::tuple<Tensor, Tensor> linalg_lu_jvp( |
| const Tensor& dA, |
| const Tensor& P, |
| const Tensor& L, |
| const Tensor& U, |
| const bool pivot); |
| |
| Tensor lu_factor_ex_backward( |
| const Tensor& grad, |
| const Tensor& LU, |
| const Tensor& pivs, |
| const bool pivot |
| ); |
| Tensor lu_factor_ex_jvp( |
| const Tensor& dX, |
| const Tensor& LU, |
| const Tensor& pivs, |
| const bool pivot |
| ); |
| |
| Tensor batch_norm_jvp( |
| const Tensor& input_p, const Tensor& input_t, |
| const Tensor& weight_p, const Tensor& weight_t, |
| const Tensor& bias_p, const Tensor& bias_t, |
| const c10::optional<Tensor>& running_mean, |
| const c10::optional<Tensor>& running_var, |
| const Tensor& saved_mean, const Tensor& saved_invstd, |
| bool train, |
| double eps |
| ); |
| |
| Tensor layer_norm_jvp( |
| const Tensor& input_p, const Tensor& input_t, |
| const Tensor& weight_p, const Tensor& weight_t, |
| const Tensor& bias_p, const Tensor& bias_t, |
| const Tensor& saved_mean, const Tensor& saved_invstd, |
| IntArrayRef normalized_shape |
| ); |
| |
| Tensor group_norm_jvp( |
| const Tensor& input_p, const Tensor& input_t, |
| const Tensor& weight_p, const Tensor& weight_t, |
| const Tensor& bias_p, const Tensor& bias_t, |
| const Tensor& saved_mean, const Tensor& saved_invstd, |
| int64_t groups |
| ); |
| Tensor group_norm_mean_jvp( |
| const Tensor& input_t, |
| const Tensor& mean_p, |
| int64_t groups |
| ); |
| Tensor group_norm_invstd_jvp( |
| const Tensor& input_p, const Tensor& input_t, |
| const Tensor& mean_p, const Tensor& invstd_p, |
| int64_t groups |
| ); |
| |
| Tensor convolution_jvp( |
| const Tensor& input_p, const Tensor& input_t, |
| const Tensor& weight_p, const Tensor& weight_t, |
| const Tensor& bias_p, const Tensor& bias_t, |
| IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, |
| bool transposed, IntArrayRef output_padding, int64_t groups |
| ); |
| |
| Tensor _convolution_jvp( |
| const Tensor& input_p, const Tensor& input_t, |
| const Tensor& weight_p, const Tensor& weight_t, |
| const Tensor& bias_p, const Tensor& bias_t, |
| IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, |
| bool transposed, IntArrayRef output_padding, int64_t groups, |
| bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32 |
| ); |
| |
| Tensor convolution_backward_jvp_grad_bias(const Tensor& grad_out_t, const Tensor& grad_bias); |
| |
| Tensor cat_jvp(at::TensorList tensors, int64_t dim); |
| Tensor stack_jvp(at::TensorList tensors, int64_t dim); |
| Tensor cumprod_jvp(Tensor self_t, Tensor self_p, Tensor result, int dim); |
| Tensor gather_with_keepdimed_indices(const Tensor& input, int64_t dim, const Tensor& indices, bool keepdim); |
| Tensor evenly_read_jvp(const Tensor& fw_grad, const Tensor & input, const Tensor & value); |
| Tensor warn_backwards(const Tensor &grad_output); |
| |
| std::tuple<Tensor, Tensor> _cudnn_convolution_backward( |
| const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, at::IntArrayRef padding, |
| at::IntArrayRef output_padding, at::IntArrayRef stride, at::IntArrayRef dilation, bool transposed, int64_t groups, |
| ::std::array<bool,2> output_mask); |
| |
| std::tuple<Tensor, Tensor> scatter_reduce_backward( |
| const Tensor& grad, |
| const Tensor& self, |
| int dim, |
| const Tensor& index, |
| const Tensor& src, |
| c10::string_view reduce, |
| bool include_self, |
| const Tensor& result |
| ); |
| |
| Tensor _to_copy_backward(const Tensor &grad, const c10::TensorOptions &self_options); |
| |
| std::tuple<Tensor, Tensor> index_reduce_backward( |
| const Tensor& grad, |
| const Tensor& self, |
| int dim, |
| const Tensor& index, |
| const Tensor& source, |
| c10::string_view reduce, |
| bool include_self, |
| const Tensor& result |
| ); |
| |
| } // namespace details |
| } // namespace generated |
| } // namespace autograd |
| } // namespace torch |