blob: 17358a3eb4a5610a9d12ae5e8ad07c8156eea914 [file] [log] [blame]
import inspect
from typing import Dict, List
import torch
from .. import variables
from ..exc import unimplemented
from ..utils import istype
from .base import VariableTracker
from .constant import ConstantVariable
class DistributedVariable(VariableTracker):
def __init__(self, **kwargs):
super().__init__(**kwargs)
if not DistributedVariable.is_available():
unimplemented("torch.distributed package is not available!")
@staticmethod
def is_available():
# check if the distributed package is available or not
return torch.distributed.is_available()
def is_from_local(value):
if not DistributedVariable.is_available():
return False
from torch.distributed._tensor import DTensor
return inspect.isfunction(value) and value is DTensor.from_local
def is_constant_pg_functions(value):
if not DistributedVariable.is_available():
return False
from torch.distributed.distributed_c10d import (
_get_group_tag,
get_process_group_ranks,
)
constant_processgroup_functions = [
get_process_group_ranks,
_get_group_tag,
]
return inspect.isfunction(value) and value in constant_processgroup_functions
class PlacementClassVariable(DistributedVariable):
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
@staticmethod
def is_placement_type(value):
# we can't rely on importing/accessing torch distributed, it is not always built.
if not DistributedVariable.is_available():
return False
from torch.distributed._tensor.placement_types import Placement
return type(value) is type and issubclass(value, Placement)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
if (
inspect.getattr_static(self.value, "__new__", None) in (object.__new__,)
and self.source
):
# NOTE: we don't need to track mutations to the placement class as they
# suppose to be immutable.
new_obj = object.__new__(self.value)
var = PlacementVariable(new_obj)
if inspect.getattr_static(self.value, "__init__", None):
var.call_method(tx, "__init__", args, kwargs)
return var
return super().call_function(tx, args, kwargs)
class PlacementVariable(DistributedVariable):
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
@staticmethod
def is_placement(value):
# we can't rely on importing/accessing torch distributed, it is not always built.
if not DistributedVariable.is_available():
return False
from torch.distributed._tensor.placement_types import Placement
return isinstance(value, Placement)
def as_python_constant(self):
return self.value
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from . import ConstantVariable
allowed_methods = ["__init__", "__setattr__"]
# placement types dynamo tracking allows only __init__
# and __setattr__ methods, the latter is for case like `Shard(dim)`
if name in allowed_methods:
try:
value_type = type(self.value)
assert (
inspect.getattr_static(value_type, "__getattr__", None) is None
), "no custom getattr allowed!"
method = inspect.getattr_static(value_type, name)
except AttributeError:
method = None
if method is object.__init__:
return ConstantVariable.create(None)
args = [x.as_python_constant() for x in args]
kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
method(self.value, *args, **kwargs)
return self
return super().call_method(tx, name, args, kwargs)
class DeviceMeshVariable(DistributedVariable):
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
@staticmethod
def is_device_mesh(value):
# we can't rely on importing/accessing torch distributed, it is not always built.
if not DistributedVariable.is_available():
return False
from torch.distributed._tensor.device_mesh import DeviceMesh
return istype(value, DeviceMesh)
def as_python_constant(self):
return self.value
def var_getattr(self, tx, name: str) -> VariableTracker:
if name == "ndim":
return ConstantVariable.create(self.value.ndim)
return super().var_getattr(tx, name)
class ProcessGroupVariable(DistributedVariable):
"""
We don't want a ProcessGroup object to end up in our output graph.
But it's common for dynamo to intercept a PG that is then used to get info like
rank() or world_size(), as well as passed to utility functions in distributed_c10d
which desugar it into plain types like a ranklist and tag.
For convenience and proper guarding, we construct a variable type.
TODO: make it possible to use ProcessGroupVariable as input to simple functions
like _expand_group without dynamo complaining about making a proxy for it.
It is not a tensor-like type, and we don't want a proxy- but dynamo assumes
torch library functions are dealing with tensor-like types and would have proxies
for their args.
TODO: should we make this inherit VT instead of UDOV? Do we want any of the default behaviors
or just graph-break whenever one of our special cases is not hit?
"""
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
def as_python_constant(self):
return self.value
def python_type(self):
return type(self.value)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "rank":
return variables.ConstantVariable.create(self.value.rank())
if name == "size":
return variables.ConstantVariable.create(self.value.size())
return super().call_method(tx, name, args, kwargs)
def var_getattr(self, tx, name):
if name in ["rank", "size"]:
return variables.LambdaVariable(
lambda *args, **kwargs: self.call_method(tx, name, args, kwargs)
)
# TODO should this just raise unimplemented?
return super().var_getattr(tx, name)
@staticmethod
def is_process_group(value):
# we can't rely on importing/accessing torch distributed, it is not always built.
if not DistributedVariable.is_available():
return False
from torch._C._distributed_c10d import ProcessGroup
from torch.testing._internal.distributed.fake_pg import FakeProcessGroup
return istype(value, (ProcessGroup, FakeProcessGroup))