| import torch |
| from torch.nn.parameter import Parameter |
| |
| from .module import Module |
| from .. import functional as F |
| |
| |
| class Threshold(Module): |
| """Thresholds each element of the input Tensor |
| |
| Threshold is defined as:: |
| |
| y = x if x >= threshold |
| value if x < threshold |
| |
| Args: |
| threshold: The value to threshold at |
| value: The value to replace with |
| inplace: can optionally do the operation in-place |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Threshold(0.1, 20) |
| >>> input = Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, threshold, value, inplace=False): |
| super(Threshold, self).__init__() |
| self.threshold = threshold |
| self.value = value |
| self.inplace = inplace |
| # TODO: check in THNN (if inplace == True, then assert value <= threshold) |
| |
| def forward(self, input): |
| return F.threshold(input, self.threshold, self.value, self.inplace) |
| |
| def __repr__(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return self.__class__.__name__ + ' (' \ |
| + str(self.threshold) \ |
| + ', ' + str(self.value) \ |
| + inplace_str + ')' |
| |
| |
| class ReLU(Threshold): |
| """Applies the rectified linear unit function element-wise :math:`{ReLU}(x)= max(0, x)` |
| |
| Args: |
| inplace: can optionally do the operation in-place |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.ReLU() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, inplace=False): |
| super(ReLU, self).__init__(0, 0, inplace) |
| |
| def __repr__(self): |
| inplace_str = 'inplace' if self.inplace else '' |
| return self.__class__.__name__ + ' (' \ |
| + inplace_str + ')' |
| |
| |
| class RReLU(Module): |
| |
| def __init__(self, lower=1. / 8, upper=1. / 3, inplace=False): |
| super(RReLU, self).__init__() |
| self.lower = lower |
| self.upper = upper |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) |
| |
| def __repr__(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return self.__class__.__name__ + ' (' \ |
| + str(self.lower) \ |
| + ', ' + str(self.upper) \ |
| + inplace_str + ')' |
| |
| |
| class Hardtanh(Module): |
| """Applies the HardTanh function element-wise |
| |
| HardTanh is defined as:: |
| |
| f(x) = +1, if x > 1 |
| f(x) = -1, if x < -1 |
| f(x) = x, otherwise |
| |
| The range of the linear region :math:`[-1, 1]` can be adjusted |
| |
| Args: |
| min_value: minimum value of the linear region range |
| max_value: maximum value of the linear region range |
| inplace: can optionally do the operation in-place |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.HardTanh(-2, 2) |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, min_value=-1, max_value=1, inplace=False): |
| super(Hardtanh, self).__init__() |
| self.min_val = min_value |
| self.max_val = max_value |
| self.inplace = inplace |
| assert self.max_val > self.min_val |
| |
| def forward(self, input): |
| return F.hardtanh(input, self.min_val, self.max_val, self.inplace) |
| |
| def __repr__(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return self.__class__.__name__ + ' (' \ |
| + 'min_val=' + str(self.min_val) \ |
| + ', max_val=' + str(self.max_val) \ |
| + inplace_str + ')' |
| |
| |
| class ReLU6(Hardtanh): |
| """Applies the element-wise function :math:`{ReLU6}(x) = min(max(0,x), 6)` |
| |
| Args: |
| inplace: can optionally do the operation in-place |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.ReLU6() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, inplace=False): |
| super(ReLU6, self).__init__(0, 6, inplace) |
| |
| def __repr__(self): |
| inplace_str = 'inplace' if self.inplace else '' |
| return self.__class__.__name__ + ' (' \ |
| + inplace_str + ')' |
| |
| |
| class Sigmoid(Module): |
| """Applies the element-wise function :math:`f(x) = 1 / ( 1 + exp(-x))` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Sigmoid() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| return torch.sigmoid(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class Tanh(Module): |
| """Applies element-wise, :math:`f(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Tanh() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| return torch.tanh(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class ELU(Module): |
| """Applies element-wise, :math:`f(x) = max(0,x) + min(0, alpha * (exp(x) - 1))` |
| |
| Args: |
| alpha: the alpha value for the ELU formulation |
| inplace: can optionally do the operation in-place |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.ELU() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, alpha=1., inplace=False): |
| super(ELU, self).__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.elu(input, self.alpha, self.inplace) |
| |
| def __repr__(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return self.__class__.__name__ + ' (' \ |
| + 'alpha=' + str(self.alpha) \ |
| + inplace_str + ')' |
| |
| |
| class SELU(Module): |
| """Applies element-wise, :math:`f(x) = scale * (max(0,x) + min(0, alpha * (exp(x) - 1)))`, |
| with alpha=1.6732632423543772848170429916717 and scale=1.0507009873554804934193349852946. |
| More details can be found in the paper `Self-Normalizing Neural Networks`_ . |
| |
| Args: |
| inplace (bool, optional): can optionally do the operation in-place |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.SELU() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| |
| .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 |
| """ |
| |
| def __init__(self, inplace=False): |
| super(SELU, self).__init__() |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.selu(input, self.inplace) |
| |
| def __repr__(self): |
| inplace_str = ' (inplace)' if self.inplace else '' |
| return self.__class__.__name__ + inplace_str |
| |
| |
| class GLU(Module): |
| """Applies the gated linear unit function :math:`{GLU}(a, b)= a \otimes \sigma(b)` |
| where `a` is the first half of the input vector and `b` is the second half. |
| |
| Args: |
| dim (int): the dimension on which to split the input |
| |
| Shape: |
| - Input: :math:`(*, N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(*, N / 2, *)` |
| |
| Examples:: |
| |
| >>> m = nn.GLU() |
| >>> input = autograd.Variable(torch.randn(4, 2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, dim=-1): |
| super(GLU, self).__init__() |
| self.dim = dim |
| |
| def forward(self, input): |
| return F.glu(input, self.dim) |
| |
| def __repr__(self): |
| return '{} (dim={})'.format(self.__class__.__name__, self.dim) |
| |
| |
| class Hardshrink(Module): |
| """Applies the hard shrinkage function element-wise |
| Hardshrink is defined as:: |
| f(x) = x, if x > lambda |
| f(x) = x, if x < -lambda |
| f(x) = 0, otherwise |
| |
| Args: |
| lambd: the lambda value for the Hardshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Hardshrink() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, lambd=0.5): |
| super(Hardshrink, self).__init__() |
| self.lambd = lambd |
| |
| def forward(self, input): |
| return F.hardshrink(input, self.lambd) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' (' \ |
| + str(self.lambd) + ')' |
| |
| |
| class LeakyReLU(Module): |
| """Applies element-wise, :math:`f(x) = max(0, x) + {negative\_slope} * min(0, x)` |
| |
| Args: |
| negative_slope: Controls the angle of the negative slope. Default: 1e-2 |
| inplace: can optionally do the operation in-place |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.LeakyReLU(0.1) |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, negative_slope=1e-2, inplace=False): |
| super(LeakyReLU, self).__init__() |
| self.negative_slope = negative_slope |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.leaky_relu(input, self.negative_slope, self.inplace) |
| |
| def __repr__(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return self.__class__.__name__ + ' (' \ |
| + str(self.negative_slope) \ |
| + inplace_str + ')' |
| |
| |
| class LogSigmoid(Module): |
| """Applies element-wise :math:`LogSigmoid(x) = log( 1 / (1 + exp(-x_i)))` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.LogSigmoid() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| return F.logsigmoid(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class Softplus(Module): |
| """Applies element-wise :math:`f(x) = 1/beta * log(1 + exp(beta * x_i))` |
| |
| SoftPlus is a smooth approximation to the ReLU function and can be used |
| to constrain the output of a machine to always be positive. |
| |
| For numerical stability the implementation reverts to the linear function |
| for inputs above a certain value. |
| |
| Args: |
| beta: the beta value for the Softplus formulation. Default: 1 |
| threshold: values above this revert to a linear function. Default: 20 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Softplus() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, beta=1, threshold=20): |
| super(Softplus, self).__init__() |
| self.beta = beta |
| self.threshold = threshold |
| |
| def forward(self, input): |
| return F.softplus(input, self.beta, self.threshold) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' (' \ |
| + 'beta=' + str(self.beta) \ |
| + ', threshold=' + str(self.threshold) + ')' |
| |
| |
| class Softshrink(Module): |
| """Applies the soft shrinkage function elementwise |
| |
| SoftShrinkage operator is defined as:: |
| |
| f(x) = x-lambda, if x > lambda > f(x) = x+lambda, if x < -lambda |
| f(x) = 0, otherwise |
| |
| Args: |
| lambd: the lambda value for the Softshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Softshrink() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, lambd=0.5): |
| super(Softshrink, self).__init__() |
| self.lambd = lambd |
| |
| def forward(self, input): |
| return F.softshrink(input, self.lambd) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' (' \ |
| + str(self.lambd) + ')' |
| |
| |
| class PReLU(Module): |
| """Applies element-wise the function :math:`PReLU(x) = max(0,x) + a * min(0,x)` |
| Here "a" is a learnable parameter. |
| When called without arguments, nn.PReLU() uses a single parameter "a" |
| across all input channels. If called with nn.PReLU(nChannels), a separate |
| "a" is used for each input channel. |
| |
| |
| .. note:: |
| weight decay should not be used when learning "a" for good performance. |
| |
| Args: |
| num_parameters: number of "a" to learn. Default: 1 |
| init: the initial value of "a". Default: 0.25 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.PReLU() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def __init__(self, num_parameters=1, init=0.25): |
| self.num_parameters = num_parameters |
| super(PReLU, self).__init__() |
| self.weight = Parameter(torch.Tensor(num_parameters).fill_(init)) |
| |
| def forward(self, input): |
| return F.prelu(input, self.weight) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' (' \ |
| + str(self.num_parameters) + ')' |
| |
| |
| class Softsign(Module): |
| """Applies element-wise, the function :math:`f(x) = x / (1 + |x|)` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Softsign() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| return F.softsign(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class Tanhshrink(Module): |
| """Applies element-wise, :math:`Tanhshrink(x) = x - Tanh(x)` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Tanhshrink() |
| >>> input = autograd.Variable(torch.randn(2)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| return F.tanhshrink(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class Softmin(Module): |
| """Applies the Softmin function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range `(0, 1)` and sum to 1 |
| |
| :math:`f(x) = exp(-x_i - {shift}) / sum_j exp(-x_j - {shift})` |
| |
| where :math:`{shift} = max_i - x_i` |
| |
| Shape: |
| - Input: :math:`(N, L)` |
| - Output: :math:`(N, L)` |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input, with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmin() |
| >>> input = autograd.Variable(torch.randn(2, 3)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| return F.softmin(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class Softmax(Module): |
| """Applies the Softmax function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range (0,1) and sum to 1 |
| |
| Softmax is defined as :math:`f_i(x) = exp(x_i - shift) / sum_j exp(x_j - shift)` |
| where `shift = max_i x_i` |
| |
| Shape: |
| - Input: :math:`(N, L)` |
| - Output: :math:`(N, L)` |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| .. note:: |
| This module doesn't work directly with NLLLoss, |
| which expects the Log to be computed between the Softmax and itself. |
| Use Logsoftmax instead (it's faster). |
| |
| Examples:: |
| |
| >>> m = nn.Softmax() |
| >>> input = autograd.Variable(torch.randn(2, 3)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| assert input.dim() == 2, 'Softmax requires a 2D tensor as input' |
| return F.softmax(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class Softmax2d(Module): |
| """Applies SoftMax over features to each spatial location |
| |
| When given an image of Channels x Height x Width, it will |
| |
| apply Softmax to each location :math:`(Channels, h_i, w_j)` |
| |
| Shape: |
| - Input: :math:`(N, C, H, W)` |
| - Output: :math:`(N, C, H, W)` (same shape as input) |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmax2d() |
| >>> # you softmax over the 2nd dimension |
| >>> input = autograd.Variable(torch.randn(2, 3, 12, 13)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| assert input.dim() == 4, 'Softmax2d requires a 4D tensor as input' |
| return F.softmax(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |
| |
| |
| class LogSoftmax(Module): |
| """Applies the Log(Softmax(x)) function to an n-dimensional input Tensor. |
| The LogSoftmax formulation can be simplified as |
| |
| :math:`f_i(x) = log(1 / a * exp(x_i))` where :math:`a = sum_j exp(x_j)` |
| |
| Shape: |
| - Input: :math:`(N, L)` |
| - Output: :math:`(N, L)` |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [-inf, 0) |
| |
| Examples:: |
| |
| >>> m = nn.LogSoftmax() |
| >>> input = autograd.Variable(torch.randn(2, 3)) |
| >>> print(input) |
| >>> print(m(input)) |
| """ |
| |
| def forward(self, input): |
| return F.log_softmax(input) |
| |
| def __repr__(self): |
| return self.__class__.__name__ + ' ()' |