| """Adds docstrings to Tensor functions""" |
| |
| import torch._C |
| from torch._C import _add_docstr as add_docstr |
| |
| |
| def add_docstr_all(method, docstr): |
| add_docstr(getattr(torch._C._TensorBase, method), docstr) |
| |
| |
| add_docstr_all('abs', |
| r""" |
| abs() -> Tensor |
| |
| See :func:`torch.abs` |
| """) |
| |
| add_docstr_all('abs_', |
| r""" |
| abs_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.abs` |
| """) |
| |
| add_docstr_all('acos', |
| r""" |
| acos() -> Tensor |
| |
| See :func:`torch.acos` |
| """) |
| |
| add_docstr_all('acos_', |
| r""" |
| acos_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.acos` |
| """) |
| |
| add_docstr_all('add', |
| r""" |
| add(value) -> Tensor |
| |
| See :func:`torch.add` |
| """) |
| |
| add_docstr_all('add_', |
| r""" |
| add_(value) -> Tensor |
| |
| In-place version of :meth:`~Tensor.add` |
| """) |
| |
| add_docstr_all('addbmm', |
| r""" |
| addbmm(beta=1, mat, alpha=1, batch1, batch2) -> Tensor |
| |
| See :func:`torch.addbmm` |
| """) |
| |
| add_docstr_all('addbmm_', |
| r""" |
| addbmm_(beta=1, mat, alpha=1, batch1, batch2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addbmm` |
| """) |
| |
| add_docstr_all('addcdiv', |
| r""" |
| addcdiv(value=1, tensor1, tensor2) -> Tensor |
| |
| See :func:`torch.addcdiv` |
| """) |
| |
| add_docstr_all('addcdiv_', |
| r""" |
| addcdiv_(value=1, tensor1, tensor2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addcdiv` |
| """) |
| |
| add_docstr_all('addcmul', |
| r""" |
| addcmul(value=1, tensor1, tensor2) -> Tensor |
| |
| See :func:`torch.addcmul` |
| """) |
| |
| add_docstr_all('addcmul_', |
| r""" |
| addcmul_(value=1, tensor1, tensor2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addcmul` |
| """) |
| |
| add_docstr_all('addmm', |
| r""" |
| addmm(beta=1, mat, alpha=1, mat1, mat2) -> Tensor |
| |
| See :func:`torch.addmm` |
| """) |
| |
| add_docstr_all('addmm_', |
| r""" |
| addmm_(beta=1, mat, alpha=1, mat1, mat2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addmm` |
| """) |
| |
| add_docstr_all('addmv', |
| r""" |
| addmv(beta=1, tensor, alpha=1, mat, vec) -> Tensor |
| |
| See :func:`torch.addmv` |
| """) |
| |
| add_docstr_all('addmv_', |
| r""" |
| addmv_(beta=1, tensor, alpha=1, mat, vec) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addmv` |
| """) |
| |
| add_docstr_all('addr', |
| r""" |
| addr(beta=1, alpha=1, vec1, vec2) -> Tensor |
| |
| See :func:`torch.addr` |
| """) |
| |
| add_docstr_all('addr_', |
| r""" |
| addr_(beta=1, alpha=1, vec1, vec2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addr` |
| """) |
| |
| add_docstr_all('all', |
| r""" |
| all() -> bool |
| |
| Returns ``True`` if all elements in the tensor are non-zero, ``False`` otherwise. |
| """) |
| |
| add_docstr_all('any', |
| r""" |
| any() -> bool |
| |
| Returns ``True`` if any elements in the tensor are non-zero, ``False`` otherwise. |
| """) |
| |
| add_docstr_all('apply_', |
| r""" |
| apply_(callable) -> Tensor |
| |
| Applies the function :attr:`callable` to each element in the tensor, replacing |
| each element with the value returned by :attr:`callable`. |
| |
| .. note:: |
| |
| This function only works with CPU tensors and should not be used in code |
| sections that require high performance. |
| """) |
| |
| add_docstr_all('asin', r""" |
| asin() -> Tensor |
| |
| See :func:`torch.asin` |
| """) |
| |
| add_docstr_all('asin_', |
| r""" |
| asin_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.asin` |
| """) |
| |
| add_docstr_all('atan', |
| r""" |
| atan() -> Tensor |
| |
| See :func:`torch.atan` |
| """) |
| |
| add_docstr_all('atan2', |
| r""" |
| atan2(other) -> Tensor |
| |
| See :func:`torch.atan2` |
| """) |
| |
| add_docstr_all('atan2_', |
| r""" |
| atan2_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.atan2` |
| """) |
| |
| add_docstr_all('atan_', |
| r""" |
| atan_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.atan` |
| """) |
| |
| add_docstr_all('baddbmm', |
| r""" |
| baddbmm(beta=1, alpha=1, batch1, batch2) -> Tensor |
| |
| See :func:`torch.baddbmm` |
| """) |
| |
| add_docstr_all('baddbmm_', |
| r""" |
| baddbmm_(beta=1, alpha=1, batch1, batch2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.baddbmm` |
| """) |
| |
| add_docstr_all('bernoulli', |
| r""" |
| bernoulli() -> Tensor |
| |
| See :func:`torch.bernoulli` |
| """) |
| |
| add_docstr_all('bernoulli_', |
| r""" |
| bernoulli_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.bernoulli` |
| """) |
| |
| add_docstr_all('bmm', |
| r""" |
| bmm(batch2) -> Tensor |
| |
| See :func:`torch.bmm` |
| """) |
| |
| add_docstr_all('btrifact_with_info', |
| r""" |
| btrifact_with_info(pivot=True) -> (Tensor, Tensor, Tensor) |
| |
| See :func:`torch.btrifact_with_info` |
| """) |
| |
| add_docstr_all('cauchy_', |
| r""" |
| cauchy_(median=0, sigma=1, *, generator=None) -> Tensor |
| |
| Fills the tensor with numbers drawn from the Cauchy distribution: |
| |
| .. math:: |
| |
| f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - median)^2 + \sigma^2} |
| """) |
| |
| add_docstr_all('ceil', |
| r""" |
| ceil() -> Tensor |
| |
| See :func:`torch.ceil` |
| """) |
| |
| add_docstr_all('ceil_', |
| r""" |
| ceil_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.ceil` |
| """) |
| |
| add_docstr_all('clamp', |
| r""" |
| clamp(min, max) -> Tensor |
| |
| See :func:`torch.clamp` |
| """) |
| |
| add_docstr_all('clamp_', |
| r""" |
| clamp_(min, max) -> Tensor |
| |
| In-place version of :meth:`~Tensor.clamp` |
| """) |
| |
| add_docstr_all('clone', |
| r""" |
| clone() -> Tensor |
| |
| Returns a copy of the :attr:`self` tensor. The copy has the same size and data |
| type as :attr:`self`. |
| """) |
| |
| add_docstr_all('contiguous', |
| r""" |
| contiguous() -> Tensor |
| |
| Returns a contiguous tensor containing the same data as :attr:`self` tensor. If |
| :attr:`self` tensor is contiguous, this function returns the :attr:`self` |
| tensor. |
| """) |
| |
| add_docstr_all('copy_', |
| r""" |
| copy_(src, non_blocking=False) -> Tensor |
| |
| Copies the elements from :attr:`src` into :attr:`self` tensor and returns |
| :attr:`self`. |
| |
| The :attr:`src` tensor must be :ref:`broadcastable <broadcasting-semantics>` |
| with the :attr:`self` tensor. It may be of a different data type or reside on a |
| different device. |
| |
| Args: |
| src (Tensor): the source tensor to copy from |
| non_blocking (bool): if ``True`` and this copy is between CPU and GPU, |
| the copy may occur asynchronously with respect to the host. For other |
| cases, this argument has no effect. |
| """) |
| |
| add_docstr_all('cos', |
| r""" |
| cos() -> Tensor |
| |
| See :func:`torch.cos` |
| """) |
| |
| add_docstr_all('cos_', |
| r""" |
| cos_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.cos` |
| """) |
| |
| add_docstr_all('cosh', |
| r""" |
| cosh() -> Tensor |
| |
| See :func:`torch.cosh` |
| """) |
| |
| add_docstr_all('cosh_', |
| r""" |
| cosh_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.cosh` |
| """) |
| |
| add_docstr_all('cross', |
| r""" |
| cross(other, dim=-1) -> Tensor |
| |
| See :func:`torch.cross` |
| """) |
| |
| add_docstr_all('cuda', |
| r""" |
| cuda(device=None, non_blocking=False) -> Tensor |
| |
| Returns a copy of this object in CUDA memory. |
| |
| If this object is already in CUDA memory and on the correct device, |
| then no copy is performed and the original object is returned. |
| |
| Args: |
| device (:class:`torch.device`): The destination GPU device. |
| Defaults to the current CUDA device. |
| non_blocking (bool): If ``True`` and the source is in pinned memory, |
| the copy will be asynchronous with respect to the host. |
| Otherwise, the argument has no effect. Default: ``False``. |
| """) |
| |
| add_docstr_all('cumprod', |
| r""" |
| cumprod(dim) -> Tensor |
| |
| See :func:`torch.cumprod` |
| """) |
| |
| add_docstr_all('cumsum', |
| r""" |
| cumsum(dim) -> Tensor |
| |
| See :func:`torch.cumsum` |
| """) |
| |
| add_docstr_all('data_ptr', |
| r""" |
| data_ptr() -> int |
| |
| Returns the address of the first element of :attr:`self` tensor. |
| """) |
| |
| add_docstr_all('diag', |
| r""" |
| diag(diagonal=0) -> Tensor |
| |
| See :func:`torch.diag` |
| """) |
| |
| add_docstr_all('dim', |
| r""" |
| dim() -> int |
| |
| Returns the number of dimensions of :attr:`self` tensor. |
| """) |
| |
| add_docstr_all('dist', |
| r""" |
| dist(other, p=2) -> Tensor |
| |
| See :func:`torch.dist` |
| """) |
| |
| add_docstr_all('div', |
| r""" |
| div(value) -> Tensor |
| |
| See :func:`torch.div` |
| """) |
| |
| add_docstr_all('div_', |
| r""" |
| div_(value) -> Tensor |
| |
| In-place version of :meth:`~Tensor.div` |
| """) |
| |
| add_docstr_all('dot', |
| r""" |
| dot(tensor2) -> Tensor |
| |
| See :func:`torch.dot` |
| """) |
| |
| add_docstr_all('eig', |
| r""" |
| eig(eigenvectors=False) -> (Tensor, Tensor) |
| |
| See :func:`torch.eig` |
| """) |
| |
| add_docstr_all('element_size', |
| r""" |
| element_size() -> int |
| |
| Returns the size in bytes of an individual element. |
| |
| Example:: |
| |
| >>> torch.FloatTensor().element_size() |
| 4 |
| >>> torch.ByteTensor().element_size() |
| 1 |
| |
| """) |
| |
| add_docstr_all('eq', |
| r""" |
| eq(other) -> Tensor |
| |
| See :func:`torch.eq` |
| """) |
| |
| add_docstr_all('eq_', |
| r""" |
| eq_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.eq` |
| """) |
| |
| add_docstr_all('equal', |
| r""" |
| equal(other) -> bool |
| |
| See :func:`torch.equal` |
| """) |
| |
| add_docstr_all('erf', |
| r""" |
| erf() -> Tensor |
| |
| See :func:`torch.erf` |
| """) |
| |
| add_docstr_all('erfinv', |
| r""" |
| erfinv() -> Tensor |
| |
| See :func:`torch.erfinv` |
| """) |
| |
| add_docstr_all('exp', |
| r""" |
| exp() -> Tensor |
| |
| See :func:`torch.exp` |
| """) |
| |
| add_docstr_all('exp_', |
| r""" |
| exp_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.exp` |
| """) |
| |
| add_docstr_all('expm1', |
| r""" |
| expm1() -> Tensor |
| |
| See :func:`torch.expm1` |
| """) |
| |
| add_docstr_all('expm1_', |
| r""" |
| expm1_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.expm1` |
| """) |
| |
| add_docstr_all('exponential_', |
| r""" |
| exponential_(lambd=1, *, generator=None) -> Tensor |
| |
| Fills :attr:`self` tensor with elements drawn from the exponential distribution: |
| |
| .. math:: |
| |
| f(x) = \lambda e^{-\lambda x} |
| """) |
| |
| add_docstr_all('fill_', |
| r""" |
| fill_(value) -> Tensor |
| |
| Fills :attr:`self` tensor with the specified value. |
| """) |
| |
| add_docstr_all('floor', |
| r""" |
| floor() -> Tensor |
| |
| See :func:`torch.floor` |
| """) |
| |
| add_docstr_all('floor_', |
| r""" |
| floor_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.floor` |
| """) |
| |
| add_docstr_all('fmod', |
| r""" |
| fmod(divisor) -> Tensor |
| |
| See :func:`torch.fmod` |
| """) |
| |
| add_docstr_all('fmod_', |
| r""" |
| fmod_(divisor) -> Tensor |
| |
| In-place version of :meth:`~Tensor.fmod` |
| """) |
| |
| add_docstr_all('frac', |
| r""" |
| frac() -> Tensor |
| |
| See :func:`torch.frac` |
| """) |
| |
| add_docstr_all('frac_', |
| r""" |
| frac_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.frac` |
| """) |
| |
| add_docstr_all('gather', |
| r""" |
| gather(dim, index) -> Tensor |
| |
| See :func:`torch.gather` |
| """) |
| |
| add_docstr_all('ge', |
| r""" |
| ge(other) -> Tensor |
| |
| See :func:`torch.ge` |
| """) |
| |
| add_docstr_all('ge_', |
| r""" |
| ge_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.ge` |
| """) |
| |
| add_docstr_all('gels', |
| r""" |
| gels(A) -> Tensor |
| |
| See :func:`torch.gels` |
| """) |
| |
| add_docstr_all('geometric_', |
| r""" |
| geometric_(p, *, generator=None) -> Tensor |
| |
| Fills :attr:`self` tensor with elements drawn from the geometric distribution: |
| |
| .. math:: |
| |
| f(X=k) = (1 - p)^{k - 1} p |
| |
| """) |
| |
| add_docstr_all('geqrf', |
| r""" |
| geqrf() -> (Tensor, Tensor) |
| |
| See :func:`torch.geqrf` |
| """) |
| |
| add_docstr_all('ger', |
| r""" |
| ger(vec2) -> Tensor |
| |
| See :func:`torch.ger` |
| """) |
| |
| add_docstr_all('gesv', |
| r""" |
| gesv(A) -> Tensor, Tensor |
| |
| See :func:`torch.gesv` |
| """) |
| |
| add_docstr_all('gt', |
| r""" |
| gt(other) -> Tensor |
| |
| See :func:`torch.gt` |
| """) |
| |
| add_docstr_all('gt_', |
| r""" |
| gt_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.gt` |
| """) |
| |
| add_docstr_all('histc', |
| r""" |
| histc(bins=100, min=0, max=0) -> Tensor |
| |
| See :func:`torch.histc` |
| """) |
| |
| add_docstr_all('index', |
| r""" |
| index(m) -> Tensor |
| |
| Selects elements from :attr:`self` tensor using a binary mask or along a given |
| dimension. The expression ``tensor.index(m)`` is equivalent to ``tensor[m]``. |
| |
| Args: |
| m (int or ByteTensor or slice): the dimension or mask used to select elements |
| """) |
| |
| add_docstr_all('index_add_', |
| r""" |
| index_add_(dim, index, tensor) -> Tensor |
| |
| Accumulate the elements of :attr:`tensor` into the :attr:`self` tensor by adding |
| to the indices in the order given in :attr:`index`. For example, if ``dim == 0`` |
| and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is added to the |
| ``j``\ th row of :attr:`self`. |
| |
| The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the |
| length of :attr:`index` (which must be a vector), and all other dimensions must |
| match :attr:`self`, or an error will be raised. |
| |
| Args: |
| dim (int): dimension along which to index |
| index (LongTensor): indices of :attr:`tensor` to select from |
| tensor (Tensor): the tensor containing values to add |
| |
| Example:: |
| |
| >>> x = torch.Tensor(5, 3).fill_(1) |
| >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> index = torch.LongTensor([0, 4, 2]) |
| >>> x.index_add_(0, index, t) |
| >>> x |
| |
| 2 3 4 |
| 1 1 1 |
| 8 9 10 |
| 1 1 1 |
| 5 6 7 |
| [torch.FloatTensor of size (5,3)] |
| |
| """) |
| |
| add_docstr_all('index_copy_', |
| r""" |
| index_copy_(dim, index, tensor) -> Tensor |
| |
| Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting |
| the indices in the order given in :attr:`index`. For example, if ``dim == 0`` |
| and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the |
| ``j``\ th row of :attr:`self`. |
| |
| The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the |
| length of :attr:`index` (which must be a vector), and all other dimensions must |
| match :attr:`self`, or an error will be raised. |
| |
| Args: |
| dim (int): dimension along which to index |
| index (LongTensor): indices of :attr:`tensor` to select from |
| tensor (Tensor): the tensor containing values to copy |
| |
| Example:: |
| |
| >>> x = torch.zeros(5, 3) |
| >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> index = torch.LongTensor([0, 4, 2]) |
| >>> x.index_copy_(0, index, t) |
| >>> x |
| |
| 1 2 3 |
| 0 0 0 |
| 7 8 9 |
| 0 0 0 |
| 4 5 6 |
| [torch.FloatTensor of size (5,3)] |
| |
| """) |
| |
| add_docstr_all('index_fill_', |
| r""" |
| index_fill_(dim, index, val) -> Tensor |
| |
| Fills the elements of the :attr:`self` tensor with value :attr:`val` by |
| selecting the indices in the order given in :attr:`index`. |
| |
| Args: |
| dim (int): dimension along which to index |
| index (LongTensor): indices of :attr:`self` tensor to fill in |
| val (float): the value to fill with |
| |
| Example:: |
| >>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> index = torch.LongTensor([0, 2]) |
| >>> x.index_fill_(1, index, -1) |
| >>> x |
| |
| -1 2 -1 |
| -1 5 -1 |
| -1 8 -1 |
| [torch.FloatTensor of size (3,3)] |
| |
| """) |
| |
| add_docstr_all('index_put_', |
| r""" |
| index_put_(indices, value) -> Tensor |
| |
| Puts values from the tensor :attr:`value` into the tensor :attr:`self` using |
| the indices specified in :attr:`indices` (which is a tuple of Tensors). The |
| expression ``tensor.index_put_(indices, value)`` is equivalent to |
| ``tensor[indices] = value``. Returns :attr:`self`. |
| |
| Args: |
| indices (tuple of LongTensor): tensors used to index into `self`. |
| value (Tensor): tensor of same dtype as `self`. |
| """) |
| |
| add_docstr_all('index_select', |
| r""" |
| index_select(dim, index) -> Tensor |
| |
| See :func:`torch.index_select` |
| """) |
| |
| add_docstr_all('inverse', |
| r""" |
| inverse() -> Tensor |
| |
| See :func:`torch.inverse` |
| """) |
| |
| add_docstr_all('is_contiguous', |
| r""" |
| is_contiguous() -> bool |
| |
| Returns True if :attr:`self` tensor is contiguous in memory in C order. |
| """) |
| |
| add_docstr_all('is_set_to', |
| r""" |
| is_set_to(tensor) -> bool |
| |
| Returns True if this object refers to the same ``THTensor`` object from the |
| Torch C API as the given tensor. |
| """) |
| |
| add_docstr_all('item', r""" |
| item() -> number |
| |
| Returns the value of this tensor as a standard Python number. This only works |
| for tensors with one element. |
| |
| This operation is not differentiable. |
| |
| Example:: |
| |
| >>> x = torch.Tensor([1.0]) |
| >>> x.item() |
| 1.0 |
| |
| """) |
| |
| add_docstr_all('kthvalue', |
| r""" |
| kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.kthvalue` |
| """) |
| |
| add_docstr_all('le', |
| r""" |
| le(other) -> Tensor |
| |
| See :func:`torch.le` |
| """) |
| |
| add_docstr_all('le_', |
| r""" |
| le_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.le` |
| """) |
| |
| add_docstr_all('lerp', |
| r""" |
| lerp(start, end, weight) -> Tensor |
| |
| See :func:`torch.lerp` |
| """) |
| |
| add_docstr_all('lerp_', |
| r""" |
| lerp_(start, end, weight) -> Tensor |
| |
| In-place version of :meth:`~Tensor.lerp` |
| """) |
| |
| add_docstr_all('log', |
| r""" |
| log() -> Tensor |
| |
| See :func:`torch.log` |
| """) |
| |
| add_docstr_all('log_', r""" |
| log_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.log` |
| """) |
| |
| add_docstr_all('log10', |
| r""" |
| log10() -> Tensor |
| |
| See :func:`torch.log10` |
| """) |
| |
| add_docstr_all('log10_', |
| r""" |
| log10_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.log10` |
| """) |
| |
| add_docstr_all('log1p', |
| r""" |
| log1p() -> Tensor |
| |
| See :func:`torch.log1p` |
| """) |
| |
| add_docstr_all('log1p_', |
| r""" |
| log1p_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.log1p` |
| """) |
| |
| add_docstr_all('log2', |
| r""" |
| log2() -> Tensor |
| |
| See :func:`torch.log2` |
| """) |
| |
| add_docstr_all('log2_', |
| r""" |
| log2_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.log2` |
| """) |
| |
| add_docstr_all('log_normal_', u""" |
| log_normal_(mean=1, std=2, *, generator=None) |
| |
| Fills :attr:`self` tensor with numbers samples from the log-normal distribution |
| parameterized by the given mean (\u00B5) and standard deviation (\u03C3). |
| Note that :attr:`mean` and :attr:`stdv` are the mean and standard deviation of |
| the underlying normal distribution, and not of the returned distribution: |
| |
| .. math:: |
| |
| f(x) = \\dfrac{1}{x \\sigma \\sqrt{2\\pi}}\ e^{-\\dfrac{(\\ln x - \\mu)^2}{2\\sigma^2}} |
| """) |
| |
| add_docstr_all('lt', |
| r""" |
| lt(other) -> Tensor |
| |
| See :func:`torch.lt` |
| """) |
| |
| add_docstr_all('lt_', |
| r""" |
| lt_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.lt` |
| """) |
| |
| add_docstr_all('map_', |
| r""" |
| map_(tensor, callable) |
| |
| Applies :attr:`callable` for each element in :attr:`self` tensor and the given |
| :attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and |
| the given :attr:`tensor` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| The :attr:`callable` should have the signature:: |
| |
| def callable(a, b) -> number |
| """) |
| |
| add_docstr_all('masked_scatter_', |
| r""" |
| masked_scatter_(mask, source) |
| |
| Copies elements from :attr:`source` into :attr:`self` tensor at positions where |
| the :attr:`mask` is one. |
| The shape of :attr:`mask` must be :ref:`broadcastable <broadcasting-semantics>` |
| with the shape of the underlying tensor. The :attr:`source` should have at least |
| as many elements as the number of ones in :attr:`mask` |
| |
| Args: |
| mask (ByteTensor): the binary mask |
| source (Tensor): the tensor to copy from |
| |
| .. note:: |
| |
| The :attr:`mask` operates on the :attr:`self` tensor, not on the given |
| :attr:`source` tensor. |
| """) |
| |
| add_docstr_all('masked_fill_', |
| r""" |
| masked_fill_(mask, value) |
| |
| Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is |
| one. The shape of :attr:`mask` must be |
| :ref:`broadcastable <broadcasting-semantics>` with the shape of the underlying |
| tensor. |
| |
| Args: |
| mask (ByteTensor): the binary mask |
| value (float): the value to fill in with |
| """) |
| |
| add_docstr_all('masked_select', |
| r""" |
| masked_select(mask) -> Tensor |
| |
| See :func:`torch.masked_select` |
| """) |
| |
| add_docstr_all('max', |
| r""" |
| max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) |
| |
| See :func:`torch.max` |
| """) |
| |
| add_docstr_all('mean', |
| r""" |
| mean(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) |
| |
| See :func:`torch.mean` |
| """) |
| |
| add_docstr_all('median', |
| r""" |
| median(dim=None, keepdim=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.median` |
| """) |
| |
| add_docstr_all('min', |
| r""" |
| min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) |
| |
| See :func:`torch.min` |
| """) |
| |
| add_docstr_all('mm', |
| r""" |
| mm(mat2) -> Tensor |
| |
| See :func:`torch.mm` |
| """) |
| |
| add_docstr_all('mode', |
| r""" |
| mode(dim=None, keepdim=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.mode` |
| """) |
| |
| add_docstr_all('mul', |
| r""" |
| mul(value) -> Tensor |
| |
| See :func:`torch.mul` |
| """) |
| |
| add_docstr_all('mul_', |
| r""" |
| mul_(value) |
| |
| In-place version of :meth:`~Tensor.mul` |
| """) |
| |
| add_docstr_all('multinomial', |
| r""" |
| multinomial(num_samples, replacement=False, *, generator=None) -> Tensor |
| |
| See :func:`torch.multinomial` |
| """) |
| |
| add_docstr_all('mv', |
| r""" |
| mv(vec) -> Tensor |
| |
| See :func:`torch.mv` |
| """) |
| |
| add_docstr_all('narrow', |
| r""" |
| narrow(dimension, start, length) -> Tensor |
| |
| Returns a new tensor that is a narrowed version of :attr:`self` tensor. The |
| dimension :attr:`dim` is narrowed from :attr:`start` to :attr:`start + length`. The |
| returned tensor and :attr:`self` tensor share the same underlying storage. |
| |
| Args: |
| dimension (int): the dimension along which to narrow |
| start (int): the starting dimension |
| length (int): the distance to the ending dimension |
| |
| Example:: |
| |
| >>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> x.narrow(0, 0, 2) |
| |
| 1 2 3 |
| 4 5 6 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> x.narrow(1, 1, 2) |
| |
| 2 3 |
| 5 6 |
| 8 9 |
| [torch.FloatTensor of size (3,2)] |
| |
| """) |
| |
| add_docstr_all('ndimension', |
| r""" |
| ndimension() -> int |
| |
| Alias for :meth:`~Tensor.dim()` |
| """) |
| |
| add_docstr_all('ne', |
| r""" |
| ne(other) -> Tensor |
| |
| See :func:`torch.ne` |
| """) |
| |
| add_docstr_all('ne_', |
| r""" |
| ne_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.ne` |
| """) |
| |
| add_docstr_all('neg', |
| r""" |
| neg() -> Tensor |
| |
| See :func:`torch.neg` |
| """) |
| |
| add_docstr_all('neg_', |
| r""" |
| neg_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.neg` |
| """) |
| |
| add_docstr_all('nelement', |
| r""" |
| nelement() -> int |
| |
| Alias for :meth:`~Tensor.numel` |
| """) |
| |
| add_docstr_all('nonzero', |
| r""" |
| nonzero() -> LongTensor |
| |
| See :func:`torch.nonzero` |
| """) |
| |
| add_docstr_all('norm', |
| r""" |
| norm(p=2, dim=None, keepdim=False) -> Tensor |
| |
| See :func:`torch.norm` |
| """) |
| |
| add_docstr_all('normal_', |
| r""" |
| normal_(mean=0, std=1, *, generator=None) -> Tensor |
| |
| Fills :attr:`self` tensor with elements samples from the normal distribution |
| parameterized by :attr:`mean` and :attr:`std`. |
| """) |
| |
| add_docstr_all('numel', |
| r""" |
| numel() -> int |
| |
| See :func:`torch.numel` |
| """) |
| |
| add_docstr_all('numpy', |
| r""" |
| numpy() -> numpy.ndarray |
| |
| Returns :attr:`self` tensor as a NumPy :class:`ndarray`. This tensor and the |
| returned :class:`ndarray` share the same underlying storage. Changes to |
| :attr:`self` tensor will be reflected in the :class:`ndarray` and vice versa. |
| """) |
| |
| add_docstr_all('orgqr', |
| r""" |
| orgqr(input2) -> Tensor |
| |
| See :func:`torch.orgqr` |
| """) |
| |
| add_docstr_all('ormqr', |
| r""" |
| ormqr(input2, input3, left=True, transpose=False) -> Tensor |
| |
| See :func:`torch.ormqr` |
| """) |
| |
| add_docstr_all('potrf', |
| r""" |
| potrf(upper=True) -> Tensor |
| |
| See :func:`torch.potrf` |
| """) |
| |
| add_docstr_all('potri', |
| r""" |
| potri(upper=True) -> Tensor |
| |
| See :func:`torch.potri` |
| """) |
| |
| add_docstr_all('potrs', |
| r""" |
| potrs(input2, upper=True) -> Tensor |
| |
| See :func:`torch.potrs` |
| """) |
| |
| add_docstr_all('pow', |
| r""" |
| pow(exponent) -> Tensor |
| |
| See :func:`torch.pow` |
| """) |
| |
| add_docstr_all('pow_', |
| r""" |
| pow_(exponent) -> Tensor |
| |
| In-place version of :meth:`~Tensor.pow` |
| """) |
| |
| add_docstr_all('prod', |
| r""" |
| prod(dim=None, keepdim=False) -> Tensor |
| |
| See :func:`torch.prod` |
| """) |
| |
| add_docstr_all('pstrf', |
| r""" |
| pstrf(upper=True, tol=-1) -> (Tensor, IntTensor) |
| |
| See :func:`torch.pstrf` |
| """) |
| |
| add_docstr_all('put_', |
| r""" |
| put_(indices, tensor, accumulate=False) -> Tensor |
| |
| Copies the elements from :attr:`tensor` into the positions specified by |
| indices. For the purpose of indexing, the :attr:`self` tensor is treated as if |
| it were a 1-D tensor. |
| |
| If :attr:`accumulate` is ``True``, the elements in :attr:`tensor` are added to |
| :attr:`self`. If accumulate is ``False``, the behavior is undefined if indices |
| contain duplicate elements. |
| |
| Args: |
| indices (LongTensor): the indices into self |
| tensor (Tensor): the tensor containing values to copy from |
| accumulate (bool): whether to accumulate into self |
| |
| Example:: |
| |
| >>> src = torch.Tensor([[4, 3, 5], |
| [6, 7, 8]]) |
| >>> src.put_(torch.LongTensor([1, 3]), torch.Tensor([9, 10])) |
| |
| 4 9 5 |
| 10 7 8 |
| [torch.FloatTensor of size (2,3)] |
| """) |
| |
| add_docstr_all('qr', |
| r""" |
| qr() -> (Tensor, Tensor) |
| |
| See :func:`torch.qr` |
| """) |
| |
| add_docstr_all('random_', |
| r""" |
| random_(from=0, to=None, *, generator=None) -> Tensor |
| |
| Fills :attr:`self` tensor with numbers sampled from the discrete uniform |
| distribution over ``[from, to - 1]``. If not specified, the values are usually |
| only bounded by :attr:`self` tensor's data type. However, for floating point |
| types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every |
| value is representable. For example, `torch.DoubleTensor(1).random_()` will be |
| uniform in ``[0, 2^53]``. |
| """) |
| |
| add_docstr_all('reciprocal', |
| r""" |
| reciprocal() -> Tensor |
| |
| See :func:`torch.reciprocal` |
| """) |
| |
| add_docstr_all('reciprocal_', |
| r""" |
| reciprocal_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.reciprocal` |
| """) |
| |
| add_docstr_all('remainder', |
| r""" |
| remainder(divisor) -> Tensor |
| |
| See :func:`torch.remainder` |
| """) |
| |
| add_docstr_all('remainder_', |
| r""" |
| remainder_(divisor) -> Tensor |
| |
| In-place version of :meth:`~Tensor.remainder` |
| """) |
| |
| add_docstr_all('renorm', |
| r""" |
| renorm(p, dim, maxnorm) -> Tensor |
| |
| See :func:`torch.renorm` |
| """) |
| |
| add_docstr_all('renorm_', |
| r""" |
| renorm_(p, dim, maxnorm) -> Tensor |
| |
| In-place version of :meth:`~Tensor.renorm` |
| """) |
| |
| add_docstr_all('repeat', |
| r""" |
| repeat(*sizes) -> Tensor |
| |
| Repeats this tensor along the specified dimensions. |
| |
| Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. |
| |
| Args: |
| sizes (torch.Size or int...): The number of times to repeat this tensor along each |
| dimension |
| |
| Example:: |
| |
| >>> x = torch.Tensor([1, 2, 3]) |
| >>> x.repeat(4, 2) |
| |
| 1 2 3 1 2 3 |
| 1 2 3 1 2 3 |
| 1 2 3 1 2 3 |
| 1 2 3 1 2 3 |
| [torch.FloatTensor of size (4,6)] |
| |
| >>> x.repeat(4, 2, 1).size() |
| |
| torch.Size([4, 2, 3]) |
| |
| """) |
| |
| add_docstr_all('reshape', |
| r""" |
| reshape(*shape) -> Tensor |
| |
| Returns a tensor with the same data and number of elements as :attr:`self`, |
| but with the specified shape. |
| |
| Args: |
| shape (tuple of ints or int...): the desired shape |
| |
| See :func:`torch.reshape` |
| """) |
| |
| add_docstr_all('resize_', |
| r""" |
| resize_(*sizes) -> Tensor |
| |
| Resizes :attr:`self` tensor to the specified size. If the number of elements is |
| larger than the current storage size, then the underlying storage is resized |
| to fit the new number of elements. If the number of elements is smaller, the |
| underlying storage is not changed. Existing elements are preserved but any new |
| memory is uninitialized. |
| |
| Args: |
| sizes (torch.Size or int...): the desired size |
| |
| Example:: |
| |
| >>> x = torch.Tensor([[1, 2], [3, 4], [5, 6]]) |
| >>> x.resize_(2, 2) |
| >>> x |
| |
| 1 2 |
| 3 4 |
| [torch.FloatTensor of size (2,2)] |
| |
| """) |
| |
| add_docstr_all('resize_as_', |
| r""" |
| resize_as_(tensor) -> Tensor |
| |
| Resizes the :attr:`self` tensor to be the same size as the specified |
| :attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``. |
| """) |
| |
| add_docstr_all('round', |
| r""" |
| round() -> Tensor |
| |
| See :func:`torch.round` |
| """) |
| |
| add_docstr_all('round_', |
| r""" |
| round_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.round` |
| """) |
| |
| add_docstr_all('rsqrt', |
| r""" |
| rsqrt() -> Tensor |
| |
| See :func:`torch.rsqrt` |
| """) |
| |
| add_docstr_all('rsqrt_', |
| r""" |
| rsqrt_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.rsqrt` |
| """) |
| |
| add_docstr_all('scatter_', |
| r""" |
| scatter_(dim, index, src) -> Tensor |
| |
| Writes all values from the tensor :attr:`src` into :attr:`self` at the indices |
| specified in the :attr:`index` tensor. For each value in :attr:`src`, its output |
| index is specified by its index in :attr:`src` for dimension != :attr:`dim` and |
| by the corresponding value in :attr:`index` for dimension = :attr:`dim`. |
| |
| For a 3-D tensor, :attr:`self` is updated as:: |
| |
| self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 |
| self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 |
| self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 |
| |
| This is the reverse operation of the manner described in :meth:`~Tensor.gather`. |
| |
| :attr:`self`, :attr:`index` and :attr:`src` should have same number of |
| dimensions. It is also required that `index->size[d] <= src->size[d]` for all |
| dimension `d`, and that `index->size[d] <= real->size[d]` for all dimensions |
| `d != dim`. |
| |
| Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be |
| between `0` and `(self.size(dim) -1)` inclusive, and all values in a row along |
| the specified dimension :attr:`dim` must be unique. |
| |
| Args: |
| input (Tensor): the source tensor |
| dim (int): the axis along which to index |
| index (LongTensor): the indices of elements to scatter |
| src (Tensor or float): the source element(s) to scatter |
| |
| Example:: |
| |
| >>> x = torch.rand(2, 5) |
| >>> x |
| |
| 0.4319 0.6500 0.4080 0.8760 0.2355 |
| 0.2609 0.4711 0.8486 0.8573 0.1029 |
| [torch.FloatTensor of size (2,5)] |
| |
| >>> torch.zeros(3, 5).scatter_(0, torch.LongTensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x) |
| |
| 0.4319 0.4711 0.8486 0.8760 0.2355 |
| 0.0000 0.6500 0.0000 0.8573 0.0000 |
| 0.2609 0.0000 0.4080 0.0000 0.1029 |
| [torch.FloatTensor of size (3,5)] |
| |
| >>> z = torch.zeros(2, 4).scatter_(1, torch.LongTensor([[2], [3]]), 1.23) |
| >>> z |
| |
| 0.0000 0.0000 1.2300 0.0000 |
| 0.0000 0.0000 0.0000 1.2300 |
| [torch.FloatTensor of size (2,4)] |
| |
| """) |
| |
| add_docstr_all('select', |
| r""" |
| select(dim, index) -> Tensor |
| |
| Slices the :attr:`self` tensor along the selected dimension at the given index. |
| This function returns a tensor with the given dimension removed. |
| |
| Args: |
| dim (int): the dimension to slice |
| index (int): the index to select with |
| |
| .. note:: |
| |
| :meth:`select` is equivalent to slicing. For example, |
| ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and |
| ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. |
| """) |
| |
| add_docstr_all('set_', |
| r""" |
| set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor |
| |
| Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, |
| :attr:`self` tensor will share the same storage and have the same size and |
| strides as :attr:`source`. Changes to elements in one tensor will be reflected |
| in the other. |
| |
| If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying |
| storage, offset, size, and stride. |
| |
| Args: |
| source (Tensor or Storage): the tensor or storage to use |
| storage_offset (int, optional): the offset in the storage |
| size (torch.Size, optional): the desired size. Defaults to the size of the source. |
| stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. |
| """) |
| |
| add_docstr_all('sigmoid', |
| r""" |
| sigmoid() -> Tensor |
| |
| See :func:`torch.sigmoid` |
| """) |
| |
| add_docstr_all('sigmoid_', |
| r""" |
| sigmoid_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sigmoid` |
| """) |
| |
| add_docstr_all('sign', |
| r""" |
| sign() -> Tensor |
| |
| See :func:`torch.sign` |
| """) |
| |
| add_docstr_all('sign_', |
| r""" |
| sign_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sign` |
| """) |
| |
| add_docstr_all('sin', |
| r""" |
| sin() -> Tensor |
| |
| See :func:`torch.sin` |
| """) |
| |
| add_docstr_all('sin_', |
| r""" |
| sin_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sin` |
| """) |
| |
| add_docstr_all('sinh', |
| r""" |
| sinh() -> Tensor |
| |
| See :func:`torch.sinh` |
| """) |
| |
| add_docstr_all('sinh_', |
| r""" |
| sinh_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sinh` |
| """) |
| |
| add_docstr_all('size', |
| r""" |
| size() -> torch.Size |
| |
| Returns the size of the :attr:`self` tensor. The returned value is a subclass of |
| :class:`tuple`. |
| |
| Example:: |
| |
| >>> torch.Tensor(3, 4, 5).size() |
| torch.Size([3, 4, 5]) |
| |
| """) |
| |
| add_docstr_all('sort', |
| r""" |
| sort(dim=None, descending=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.sort` |
| """) |
| |
| add_docstr_all('sqrt', |
| r""" |
| sqrt() -> Tensor |
| |
| See :func:`torch.sqrt` |
| """) |
| |
| add_docstr_all('sqrt_', |
| r""" |
| sqrt_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sqrt` |
| """) |
| |
| add_docstr_all('squeeze', |
| r""" |
| squeeze(dim=None) -> Tensor |
| |
| See :func:`torch.squeeze` |
| """) |
| |
| add_docstr_all('squeeze_', |
| r""" |
| squeeze_(dim=None) -> Tensor |
| |
| In-place version of :meth:`~Tensor.squeeze` |
| """) |
| |
| add_docstr_all('std', |
| r""" |
| std(dim=None, unbiased=True, keepdim=False) -> Tensor |
| |
| See :func:`torch.std` |
| """) |
| |
| add_docstr_all('storage', |
| r""" |
| storage() -> torch.Storage |
| |
| Returns the underlying storage |
| """) |
| |
| add_docstr_all('storage_offset', |
| r""" |
| storage_offset() -> int |
| |
| Returns :attr:`self` tensor's offset in the underlying storage in terms of |
| number of storage elements (not bytes). |
| |
| Example:: |
| |
| >>> x = torch.Tensor([1, 2, 3, 4, 5]) |
| >>> x.storage_offset() |
| 0 |
| >>> x[3:].storage_offset() |
| 3 |
| |
| """) |
| |
| add_docstr_all('stride', |
| r""" |
| stride(dim) -> tuple or int |
| |
| Returns the stride of :attr:`self` tensor. |
| |
| Stride is the jump necessary to go from one element to the next one in the |
| specified dimension :attr:`dim`. A tuple of all strides is returned when no |
| argument is passed in. Otherwise, an integer value is returned as the stride in |
| the particular dimension :attr:`dim`. |
| |
| Args: |
| dim (int, optional): the desired dimension in which stride is required |
| |
| Example:: |
| |
| >>> x = torch.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) |
| >>> x.stride() |
| (5, 1) |
| >>>x.stride(0) |
| 5 |
| >>> x.stride(-1) |
| 1 |
| |
| """) |
| |
| add_docstr_all('sub', |
| r""" |
| sub(value, other) -> Tensor |
| |
| Subtracts a scalar or tensor from :attr:`self` tensor. If both :attr:`value` and |
| :attr:`other` are specified, each element of :attr:`other` is scaled by |
| :attr:`value` before being used. |
| |
| When :attr:`other` is a tensor, the shape of :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>` with the shape of the underlying |
| tensor. |
| |
| """) |
| |
| add_docstr_all('sub_', |
| r""" |
| sub_(x) -> Tensor |
| |
| In-place version of :meth:`~Tensor.sub` |
| """) |
| |
| add_docstr_all('sum', |
| r""" |
| sum(dim=None, keepdim=False) -> Tensor |
| |
| See :func:`torch.sum` |
| """) |
| |
| add_docstr_all('svd', |
| r""" |
| svd(some=True) -> (Tensor, Tensor, Tensor) |
| |
| See :func:`torch.svd` |
| """) |
| |
| add_docstr_all('symeig', |
| r""" |
| symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor) |
| |
| See :func:`torch.symeig` |
| """) |
| |
| add_docstr_all('t', |
| r""" |
| t() -> Tensor |
| |
| See :func:`torch.t` |
| """) |
| |
| add_docstr_all('t_', |
| r""" |
| t_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.t` |
| """) |
| |
| add_docstr_all('take', |
| r""" |
| take(indices) -> Tensor |
| |
| See :func:`torch.take` |
| """) |
| |
| add_docstr_all('tan_', |
| r""" |
| tan_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.tan` |
| """) |
| |
| add_docstr_all('tanh', |
| r""" |
| tanh() -> Tensor |
| |
| See :func:`torch.tanh` |
| """) |
| |
| add_docstr_all('tanh_', |
| r""" |
| tanh_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.tanh` |
| """) |
| |
| add_docstr_all('topk', |
| r""" |
| topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor) |
| |
| See :func:`torch.topk` |
| """) |
| |
| add_docstr_all('trace', |
| r""" |
| trace() -> Tensor |
| |
| See :func:`torch.trace` |
| """) |
| |
| add_docstr_all('transpose', |
| r""" |
| transpose(dim0, dim1) -> Tensor |
| |
| See :func:`torch.transpose` |
| """) |
| |
| add_docstr_all('transpose_', |
| r""" |
| transpose_(dim0, dim1) -> Tensor |
| |
| In-place version of :meth:`~Tensor.transpose` |
| """) |
| |
| add_docstr_all('tril', |
| r""" |
| tril(k=0) -> Tensor |
| |
| See :func:`torch.tril` |
| """) |
| |
| add_docstr_all('tril_', |
| r""" |
| tril_(k=0) -> Tensor |
| |
| In-place version of :meth:`~Tensor.tril` |
| """) |
| |
| add_docstr_all('triu', |
| r""" |
| triu(k=0) -> Tensor |
| |
| See :func:`torch.triu` |
| """) |
| |
| add_docstr_all('triu_', |
| r""" |
| triu_(k=0) -> Tensor |
| |
| In-place version of :meth:`~Tensor.triu` |
| """) |
| |
| add_docstr_all('trtrs', |
| r""" |
| trtrs(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) |
| |
| See :func:`torch.trtrs` |
| """) |
| |
| add_docstr_all('trunc', |
| r""" |
| trunc() -> Tensor |
| |
| See :func:`torch.trunc` |
| """) |
| |
| add_docstr_all('trunc_', |
| r""" |
| trunc_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.trunc` |
| """) |
| |
| add_docstr_all('type', |
| r""" |
| type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor |
| Returns the type if `dtype` is not provided, else casts this object to |
| the specified type. |
| |
| If this is already of the correct type, no copy is performed and the |
| original object is returned. |
| |
| Args: |
| dtype (type or string): The desired type |
| non_blocking (bool): If ``True``, and the source is in pinned memory |
| and destination is on the GPU or vice versa, the copy is performed |
| asynchronously with respect to the host. Otherwise, the argument |
| has no effect. |
| **kwargs: For compatibility, may contain the key ``async`` in place of |
| the ``non_blocking`` argument. The ``async`` arg is deprecated. |
| """) |
| |
| add_docstr_all('type_as', |
| r""" |
| type_as(tensor) -> Tensor |
| |
| Returns this tensor cast to the type of the given tensor. |
| |
| This is a no-op if the tensor is already of the correct type. This is |
| equivalent to:: |
| |
| self.type(tensor.type()) |
| |
| Params: |
| tensor (Tensor): the tensor which has the desired type |
| """) |
| |
| add_docstr_all('unfold', |
| r""" |
| unfold(dim, size, step) -> Tensor |
| |
| Returns a tensor which contains all slices of size :attr:`size` from |
| :attr:`self` tensor in the dimension :attr:`dim`. |
| |
| Step between two slices is given by :attr:`step`. |
| |
| If `sizedim` is the size of dimension dim for :attr:`self`, the size of |
| dimension :attr:`dim` in the returned tensor will be |
| `(sizedim - size) / step + 1`. |
| |
| An additional dimension of size size is appended in the returned tensor. |
| |
| Args: |
| dim (int): dimension in which unfolding happens |
| size (int): the size of each slice that is unfolded |
| step (int): the step between each slice |
| |
| Example:: |
| |
| >>> x = torch.arange(1, 8) |
| >>> x |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| [torch.FloatTensor of size (7,)] |
| |
| >>> x.unfold(0, 2, 1) |
| |
| 1 2 |
| 2 3 |
| 3 4 |
| 4 5 |
| 5 6 |
| 6 7 |
| [torch.FloatTensor of size (6,2)] |
| |
| >>> x.unfold(0, 2, 2) |
| |
| 1 2 |
| 3 4 |
| 5 6 |
| [torch.FloatTensor of size (3,2)] |
| |
| """) |
| |
| add_docstr_all('uniform_', |
| r""" |
| uniform_(from=0, to=1) -> Tensor |
| |
| Fills :attr:`self` tensor with numbers sampled from the continuous uniform |
| distribution: |
| |
| .. math:: |
| P(x) = \dfrac{1}{\text{to} - \text{from}} |
| """) |
| |
| add_docstr_all('unsqueeze', |
| r""" |
| unsqueeze(dim) -> Tensor |
| |
| See :func:`torch.unsqueeze` |
| """) |
| |
| add_docstr_all('unsqueeze_', |
| r""" |
| unsqueeze_(dim) -> Tensor |
| |
| In-place version of :meth:`~Tensor.unsqueeze` |
| """) |
| |
| add_docstr_all('var', |
| r""" |
| var(dim=None, unbiased=True, keepdim=False) -> Tensor |
| |
| See :func:`torch.var` |
| """) |
| |
| add_docstr_all('view', |
| r""" |
| view(*args) -> Tensor |
| |
| Returns a new tensor with the same data as the :attr:`self` tensor but of a |
| different size. |
| |
| The returned tensor shares the same data and must have the same number |
| of elements, but may have a different size. For a tensor to be viewed, the new |
| view size must be compatible with its original size and stride, i.e., each new |
| view dimension must either be a subspace of an original dimension, or only span |
| across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following |
| contiguity-like condition that :math:`\forall i = 0, \dots, k-1`, |
| |
| .. math:: |
| |
| stride[i] = stride[i+1] \times size[i+1] |
| |
| Otherwise, :func:`contiguous` needs to be called before the tensor can be |
| viewed. |
| |
| Args: |
| args (torch.Size or int...): the desired size |
| |
| Example:: |
| |
| >>> x = torch.randn(4, 4) |
| >>> x.size() |
| torch.Size([4, 4]) |
| >>> y = x.view(16) |
| >>> y.size() |
| torch.Size([16]) |
| >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions |
| >>> z.size() |
| torch.Size([2, 8]) |
| |
| """) |
| |
| add_docstr_all('expand', |
| r""" |
| expand(*sizes) -> Tensor |
| |
| Returns a new view of the :attr:`self` tensor with singleton dimensions expanded |
| to a larger size. |
| |
| Passing -1 as the size for a dimension means not changing the size of |
| that dimension. |
| |
| Tensor can be also expanded to a larger number of dimensions, and the |
| new ones will be appended at the front. For the new dimensions, the |
| size cannot be set to -1. |
| |
| Expanding a tensor does not allocate new memory, but only creates a |
| new view on the existing tensor where a dimension of size one is |
| expanded to a larger size by setting the ``stride`` to 0. Any dimension |
| of size 1 can be expanded to an arbitrary value without allocating new |
| memory. |
| |
| Args: |
| *sizes (torch.Size or int...): the desired expanded size |
| |
| Example:: |
| |
| >>> x = torch.Tensor([[1], [2], [3]]) |
| >>> x.size() |
| torch.Size([3, 1]) |
| >>> x.expand(3, 4) |
| |
| 1 1 1 1 |
| 2 2 2 2 |
| 3 3 3 3 |
| [torch.FloatTensor of size (3,4)] |
| |
| >>> x.expand(-1, 4) # -1 means not changing the size of that dimension |
| |
| 1 1 1 1 |
| 2 2 2 2 |
| 3 3 3 3 |
| [torch.FloatTensor of size (3,4)] |
| |
| """) |
| |
| add_docstr_all('zero_', |
| r""" |
| zero_() -> Tensor |
| |
| Fills :attr:`self` tensor with zeros. |
| """) |
| |
| add_docstr_all('matmul', |
| r""" |
| matmul(tensor2) -> Tensor |
| |
| See :func:`torch.matmul` |
| """) |
| |
| add_docstr_all('chunk', |
| r""" |
| chunk(chunks, dim=0) -> List of Tensors |
| |
| See :func:`torch.chunk` |
| """) |
| |
| add_docstr_all('stft', |
| r""" |
| stft(frame_length, hop, fft_size=None, return_onesided=True, window=None, pad_end=0) -> Tensor |
| |
| See :func:`torch.stft` |
| """) |
| |
| add_docstr_all('fft', |
| r""" |
| fft(signal_ndim, normalized=False) -> Tensor |
| |
| See :func:`torch.fft` |
| """) |
| |
| add_docstr_all('ifft', |
| r""" |
| ifft(signal_ndim, normalized=False) -> Tensor |
| |
| See :func:`torch.ifft` |
| """) |
| |
| add_docstr_all('rfft', |
| r""" |
| rfft(signal_ndim, normalized=False, onesided=True) -> Tensor |
| |
| See :func:`torch.rfft` |
| """) |
| |
| add_docstr_all('irfft', |
| r""" |
| irfft(signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor |
| |
| See :func:`torch.irfft` |
| """) |
| |
| add_docstr_all('det', |
| r""" |
| det() -> Tensor |
| |
| See :func:`torch.det` |
| """) |
| |
| add_docstr_all('where', |
| r""" |
| where(condition, y) -> Tensor |
| |
| ``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. |
| See :func:`torch.where` |
| """) |
| |
| add_docstr_all('logdet', |
| r""" |
| logdet() -> Tensor |
| |
| See :func:`torch.logdet` |
| """) |
| |
| add_docstr_all('slogdet', |
| r""" |
| slogdet() -> (Tensor, Tensor) |
| |
| See :func:`torch.slogdet` |
| """) |