|  | from typing import List, Dict, Optional, Tuple | 
|  | import torch | 
|  | import torch.optim._functional as F | 
|  |  | 
|  | from torch import Tensor | 
|  |  | 
|  | # Define a TorchScript compatible Functional Rprop Optimizer | 
|  | # where we use these optimizer in a functional way. | 
|  | # Instead of using the `param.grad` when updating parameters, | 
|  | # we explicitly allow the distributed optimizer pass gradients to | 
|  | # the `step` function. In this way, we could separate the gradients | 
|  | # and parameters and allow multithreaded trainer to update the | 
|  | # parameters without data traces on accumulating to the same .grad. | 
|  | # NOTE: This should be only used by distributed optimizer internals | 
|  | # and not meant to expose to the user. | 
|  | @torch.jit.script | 
|  | class _FunctionalRprop(object): | 
|  | def __init__( | 
|  | self, | 
|  | params: List[Tensor], | 
|  | lr: float = 1e-2, | 
|  | etas: Tuple[float, float] = (0.5, 1.2), | 
|  | step_sizes: Tuple[float, float] = (1e-6, 50), | 
|  | _allow_empty_param_list: bool = False, | 
|  | ): | 
|  | self.defaults = { | 
|  | "lr": lr, | 
|  | } | 
|  | self.etas = etas | 
|  | self.step_sizes = step_sizes | 
|  |  | 
|  | if len(params) == 0 and not _allow_empty_param_list: | 
|  | raise ValueError("optimizer got an empty parameter list") | 
|  |  | 
|  | # NOTE: we only have one param_group and don't allow user to add additional | 
|  | # param group as it's not a common use case. | 
|  | self.param_group = {"params": params} | 
|  |  | 
|  | self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) | 
|  |  | 
|  | def step(self, gradients: List[Optional[Tensor]]): | 
|  | params = self.param_group['params'] | 
|  | params_with_grad = [] | 
|  | grads = [] | 
|  | prevs = [] | 
|  | step_sizes = [] | 
|  | lr = self.defaults['lr'] | 
|  | etaminus, etaplus = self.etas | 
|  | step_size_min, step_size_max = self.step_sizes | 
|  |  | 
|  | if len(params) != len(gradients): | 
|  | raise ValueError( | 
|  | "the gradients passed in does not equal to the size of the parameters!" | 
|  | + f"Params length: {len(params)}. " | 
|  | + f"Gradients length: {len(gradients)}" | 
|  | ) | 
|  |  | 
|  | for param, gradient in zip(params, gradients): | 
|  | if gradient is not None: | 
|  | params_with_grad.append(param) | 
|  | grads.append(gradient) | 
|  | # Lazy state initialization | 
|  | if param not in self.state: | 
|  | self.state[param] = {} | 
|  | state = self.state[param] | 
|  | state['step'] = torch.tensor(0.0) | 
|  | state['prev'] = torch.zeros_like(param, memory_format=torch.preserve_format) | 
|  | state['step_size'] = torch.full_like(gradient, lr) | 
|  |  | 
|  | state = self.state[param] | 
|  | prevs.append(state['prev']) | 
|  | step_sizes.append(state['step_size']) | 
|  |  | 
|  | state['step'] += 1 | 
|  |  | 
|  | with torch.no_grad(): | 
|  | F.rprop(params_with_grad, | 
|  | grads, | 
|  | prevs, | 
|  | step_sizes, | 
|  | step_size_min=step_size_min, | 
|  | step_size_max=step_size_max, | 
|  | etaminus=etaminus, | 
|  | etaplus=etaplus) |