blob: 6059961132a231cb4a1e3ce6b89985052dc50ac2 [file] [log] [blame]
import functools
import os
from io import BytesIO
import shutil
import sys
import torch
from torch.jit.mobile import _load_for_lite_interpreter, _export_operator_list
_OPERATORS = set()
_FILENAMES = []
_MODELS = []
def save_model(cls):
"""Save a model and dump all the ops"""
@functools.wraps(cls)
def wrapper_save():
_MODELS.append(cls)
model = cls()
scripted = torch.jit.script(model)
buffer = BytesIO(scripted._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
ops = _export_operator_list(mobile_module)
_OPERATORS.update(ops)
path = f"./{cls.__name__}.ptl"
_FILENAMES.append(path)
scripted._save_for_lite_interpreter(path)
return wrapper_save
@save_model
class ModelWithDTypeDeviceLayoutPinMemory(torch.nn.Module):
def forward(self, x: int):
a = torch.ones(size=[3, x], dtype=torch.int64, layout=torch.strided, device="cpu", pin_memory=False)
return a
@save_model
class ModelWithTensorOptional(torch.nn.Module):
def forward(self, index):
a = torch.zeros(2, 2)
a[0][1] = 1
a[1][0] = 2
a[1][1] = 3
return a[index]
# gradient.scalarrayint(Tensor self, *, Scalar[] spacing, int? dim=None, int edge_order=1) -> Tensor[]
@save_model
class ModelWithScalarList(torch.nn.Module):
def forward(self, a: int):
values = torch.tensor([4., 1., 1., 16.], )
if a == 0:
return torch.gradient(values, spacing=torch.scalar_tensor(2., dtype=torch.float64))
elif a == 1:
return torch.gradient(values, spacing=[torch.tensor(1.).item()])
# upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
@save_model
class ModelWithFloatList(torch.nn.Upsample):
def __init__(self):
super().__init__(scale_factor=(2.0,), mode="linear", align_corners=False, recompute_scale_factor=True)
# index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
@save_model
class ModelWithListOfOptionalTensors(torch.nn.Module):
def forward(self, index):
values = torch.tensor([[4., 1., 1., 16.]])
return values[torch.tensor(0), index]
# conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1,
# int groups=1) -> Tensor
@save_model
class ModelWithArrayOfInt(torch.nn.Conv2d):
def __init__(self):
super().__init__(1, 2, (2, 2), stride=(1, 1), padding=(1, 1))
# add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
# ones_like(Tensor self, *, ScalarType?, dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None,
# MemoryFormat? memory_format=None) -> Tensor
@save_model
class ModelWithTensors(torch.nn.Module):
def forward(self, a):
b = torch.ones_like(a)
return a + b
@save_model
class ModelWithStringOptional(torch.nn.Module):
def forward(self, b):
a = torch.tensor(3, dtype=torch.int64)
out = torch.empty(size=[1], dtype=torch.float)
torch.div(b, a, out=out)
return [torch.div(b, a, rounding_mode='trunc'), out]
@save_model
class ModelWithMultipleOps(torch.nn.Module):
def __init__(self):
super().__init__()
self.ops = torch.nn.Sequential(
torch.nn.ReLU(),
torch.nn.Flatten(),
)
def forward(self, x):
x[1] = -2
return self.ops(x)
if __name__ == "__main__":
command = sys.argv[1]
ops_yaml = sys.argv[2]
backup = ops_yaml + ".bak"
if command == "setup":
tests = [
ModelWithDTypeDeviceLayoutPinMemory(),
ModelWithTensorOptional(),
ModelWithScalarList(),
ModelWithFloatList(),
ModelWithListOfOptionalTensors(),
ModelWithArrayOfInt(),
ModelWithTensors(),
ModelWithStringOptional(),
ModelWithMultipleOps(),
]
shutil.copyfile(ops_yaml, backup)
with open(ops_yaml, 'a') as f:
for op in _OPERATORS:
f.write(f"- {op}\n")
elif command == "shutdown":
for file in _MODELS:
if os.path.isfile(file):
os.remove(file)
shutil.move(backup, ops_yaml)