| # mypy: allow-untyped-defs |
| # Copyright (c) Meta Platforms, Inc. and affiliates |
| import logging |
| import math |
| import threading |
| from functools import reduce |
| from itertools import chain |
| from typing import Dict, List, Optional, Tuple, TYPE_CHECKING, Union |
| |
| import torch |
| from torch.distributed import is_available |
| from torch.utils._typing_utils import not_none |
| |
| |
| __all__ = ["init_device_mesh", "DeviceMesh"] |
| |
| |
| if not is_available(): |
| import sys |
| |
| # We need to create the stubs when distributed is not available. |
| # Otherwise, we would fail the doc tests (```./.ci/pytorch/docs-test.sh```), |
| # since it would try to import ``torch.distributed.device_mesh`` or |
| # ``torch.distributed.init_device_mesh`` but cannot find them. |
| |
| class _DeviceMeshStub: |
| pass |
| |
| def _init_device_mesh_stub(): |
| pass |
| |
| sys.modules["torch.distributed.device_mesh"].DeviceMesh = _DeviceMeshStub # type: ignore[attr-defined] |
| sys.modules[ |
| "torch.distributed.device_mesh" |
| ].init_device_mesh = _init_device_mesh_stub # type: ignore[attr-defined] |
| |
| |
| else: |
| from torch.distributed.distributed_c10d import ( |
| _find_pg_by_ranks_and_tag, |
| _get_default_group, |
| _get_group_tag, |
| get_backend, |
| get_process_group_ranks, |
| get_rank, |
| get_world_size, |
| init_process_group, |
| is_initialized, |
| new_group, |
| ProcessGroup, |
| ) |
| |
| logger = logging.getLogger(__name__) |
| |
| # only import numpy typing when type checking |
| if TYPE_CHECKING: |
| try: |
| from numpy.typing import ArrayLike |
| except ImportError: |
| logger.warning( |
| "DeviceMesh requires numpy >= 1.21 to be installed for type checking" |
| ) |
| |
| class _MeshEnv(threading.local): |
| def __init__(self) -> None: |
| self.mesh_stack: List[DeviceMesh] = [] |
| self.child_to_root_mapping: Dict[DeviceMesh, DeviceMesh] = {} |
| self.mesh_dim_group_options: Dict[ |
| int, Tuple[str, Optional[ProcessGroup.Options]] |
| ] = {} |
| self.root_to_flatten_mapping: Dict[DeviceMesh, Dict[str, DeviceMesh]] = {} |
| # Record flatten mesh name to its mesh dim index in root mesh. |
| self.flatten_name_to_root_dims: Dict[ |
| DeviceMesh, Dict[str, Tuple[int, ...]] |
| ] = {} |
| |
| def get_current_mesh(self) -> "DeviceMesh": |
| if len(self.mesh_stack) == 0: |
| raise RuntimeError("No device mesh is currently active!") |
| return self.mesh_stack[-1] |
| |
| def create_sub_mesh( |
| self, |
| device_mesh: "DeviceMesh", |
| submesh_dim_names: Tuple[str, ...], |
| submesh_dims: List[Tuple[int, ...]], |
| ) -> "DeviceMesh": |
| # Get the submesh dim size from the submesh_dims. |
| # For example, if we have a 3D mesh with mesh_shape (2, 2, 2) mesh_dim_names ("dp", "cp", "tp") and we want |
| # to slice out mesh["dp_cp"], then submesh_dims = [(0, 1), (2,)] and submesh_dim_size = [2 * 2, 2] = [4, 2]. |
| # If we want to slice out mesh["dp", "cp"], then submesh_dims = [(0,), (1,)] and submesh_dim_size = [2, 2]. |
| slice_dim_size = [ |
| reduce( |
| lambda x, y: device_mesh.mesh.size(x) * device_mesh.mesh.size(y), |
| mesh_dim, |
| ) |
| if len(mesh_dim) > 1 |
| else device_mesh.mesh.size(mesh_dim[0]) |
| for mesh_dim in submesh_dims |
| ] |
| |
| mesh_tensor = device_mesh.mesh |
| # slice_dim_idx could be differnt from submesh_dims, as we may need to flatten out some dims. |
| slice_dim_idx = [] |
| slice_dim_group_info = [] |
| # keep track of the number of dims that have been flattened so we can get the correct slice_dim_idx in the |
| # flattened mesh tensor. |
| num_dims_flatten = 0 |
| for mesh_dim_indices, mesh_dim_name in zip(submesh_dims, submesh_dim_names): |
| # Currently, this only allows slicing out a contiguous flattened dim. |
| # TODO: we need to handle reconstructing a non-contiguous flattened dim. |
| if len(mesh_dim_indices) > 1: |
| # We need to move the start_dim and end_dim to the left if some dims are already flattened. |
| mesh_tensor = mesh_tensor.flatten( |
| start_dim=mesh_dim_indices[0] - num_dims_flatten, |
| end_dim=mesh_dim_indices[-1] - num_dims_flatten, |
| ) |
| # If some dims are already flattened, we need to adjust the slice_dim_idx accordingly. |
| # For example, if the submesh_dims = [(0, 1), (2,), (3, 4)] with 0-1 flattened and 3-4 flattened, |
| # then the final slice_dim_idx should be [0, 1, 2]. |
| slice_dim_idx.append(mesh_dim_indices[0] - num_dims_flatten) |
| num_dims_flatten += len(mesh_dim_indices) - 1 |
| slice_dim_group_info.append( |
| self.root_to_flatten_mapping[device_mesh][ |
| mesh_dim_name |
| ]._dim_group_infos[0] |
| ) |
| else: |
| slice_dim_idx.append(mesh_dim_indices[0] - num_dims_flatten) |
| slice_dim_group_info.append( |
| device_mesh._dim_group_infos[mesh_dim_indices[0]] |
| ) |
| |
| # mesh_tensor has already been flattened if needed. So mesh_tensor.ndim <= device_mesh.mesh.ndim now. |
| mesh_dims_remained_idx = list(range(mesh_tensor.ndim)) |
| for idx in slice_dim_idx: |
| mesh_dims_remained_idx.remove(idx) |
| |
| # pg_ranks_by_dim is the size of [number of local ranks of the outermost submesh dimension, *slice_dim_idx] |
| # This means on each local rank of the outermost slice mesh dim, we have a tensor of submesh size with |
| # the pg ranks of the submesh. From this, we can extract the submesh mesh tensor contains the current rank. |
| pg_ranks_by_dim = mesh_tensor.permute( |
| *mesh_dims_remained_idx, *slice_dim_idx |
| ).reshape(-1, *slice_dim_size) |
| |
| cur_rank = device_mesh.get_rank() |
| for mesh_nd in pg_ranks_by_dim: |
| submesh = DeviceMesh( |
| device_mesh.device_type, |
| mesh_nd, |
| mesh_dim_names=submesh_dim_names, |
| _init_backend=False, |
| ) |
| if cur_rank in mesh_nd: |
| res_submesh = submesh |
| |
| res_submesh._dim_group_infos = slice_dim_group_info # type: ignore[possibly-undefined] |
| self.child_to_root_mapping[res_submesh] = device_mesh |
| |
| return res_submesh |
| |
| def create_flatten_mesh( |
| self, device_mesh: "DeviceMesh", mesh_dim_name: Optional[str] = None |
| ) -> "DeviceMesh": |
| root_mesh = _mesh_resources.get_root_mesh(device_mesh) |
| |
| flatten_dims_in_root = [ |
| not_none(root_mesh.mesh_dim_names).index(flattened_mesh_dim_name) |
| for flattened_mesh_dim_name in not_none(device_mesh.mesh_dim_names) |
| ] |
| |
| if not mesh_dim_name: |
| mesh_dim_name = "_".join( |
| [ |
| not_none(root_mesh.mesh_dim_names)[dim] |
| for dim in flatten_dims_in_root |
| ] |
| ) |
| |
| # Check whether the mesh_dim_name for flattened mesh is valid. |
| self.flatten_name_to_root_dims.setdefault(root_mesh, {}) |
| invalid_dim_names = chain( |
| *list(not_none(root_mesh.mesh_dim_names)), |
| *self.flatten_name_to_root_dims[root_mesh].keys(), |
| ) |
| if mesh_dim_name in invalid_dim_names: |
| raise RuntimeError( |
| f"{mesh_dim_name} already exists for submesh of the {root_mesh}. ", |
| f"The mesh_dim_names of submesh and flattened mesh are {invalid_dim_names}. " |
| f"Please specify another valid mesh_dim_name.", |
| ) |
| |
| # Quick return if the flatten mesh has been created before. |
| # TODO: If we decide to restrict flatten initialization once, we should remove |
| # this check and throw an error if the flatten mesh is already created before. |
| if ( |
| root_mesh in self.root_to_flatten_mapping |
| and mesh_dim_name in self.root_to_flatten_mapping[root_mesh] |
| ): |
| return self.root_to_flatten_mapping[root_mesh][mesh_dim_name] |
| |
| flattened_mesh_dim_size = math.prod(device_mesh.mesh.size()) |
| |
| remained_dims_in_root = list(range(root_mesh.mesh.ndim)) |
| for flatten_dim_in_root in flatten_dims_in_root: |
| remained_dims_in_root.remove(flatten_dim_in_root) |
| |
| pg_ranks_by_dim = root_mesh.mesh.permute( |
| *remained_dims_in_root, *flatten_dims_in_root |
| ).reshape(-1, flattened_mesh_dim_size) |
| |
| cur_rank = root_mesh.get_rank() |
| for mesh_nd in pg_ranks_by_dim: |
| # need to init backend here since the flattened pg doesn't exist in root mesh. |
| flattened_mesh = DeviceMesh( |
| root_mesh.device_type, |
| mesh_nd, |
| mesh_dim_names=(mesh_dim_name,), |
| ) |
| if cur_rank in mesh_nd: |
| res_flattened_mesh = flattened_mesh |
| self.child_to_root_mapping[res_flattened_mesh] = root_mesh # type: ignore[possibly-undefined] |
| self.root_to_flatten_mapping.setdefault(root_mesh, {})[mesh_dim_name] = res_flattened_mesh # type: ignore[possibly-undefined] |
| self.flatten_name_to_root_dims[root_mesh][mesh_dim_name] = tuple(flatten_dims_in_root) # type: ignore[possibly-undefined] |
| |
| return res_flattened_mesh |
| |
| def get_root_mesh(self, device_mesh: "DeviceMesh") -> "DeviceMesh": |
| # If a mesh could not be found in the child_to_root_mapping, it is a root mesh itself. |
| # A root mesh is not created through slicing. |
| # We considers the root mesh of a root mesh is itself. |
| root_mesh = self.child_to_root_mapping.get(device_mesh, None) |
| return device_mesh if not root_mesh else root_mesh |
| |
| def get_root_mesh_dim(self, device_mesh: "DeviceMesh") -> Optional[int]: |
| """ |
| Returns the index of the mesh dim in the root mesh. |
| The device_mesh passed in needs to be sliced out from the root mesh |
| or submesh of the root mesh. |
| """ |
| root_mesh = self.get_root_mesh(device_mesh) |
| child_mesh_dim_names = device_mesh.mesh_dim_names |
| if root_mesh and child_mesh_dim_names: |
| assert ( |
| len(child_mesh_dim_names) == 1 |
| ), "The submesh can only be a 1D mesh." |
| child_mesh_dim_name = child_mesh_dim_names[0] |
| return self.get_mesh_dim_by_name(root_mesh, child_mesh_dim_name) |
| return None |
| |
| @staticmethod |
| def num_devices_per_host(device_type: str) -> int: |
| return _get_device_handle(device_type).device_count() |
| |
| @staticmethod |
| def num_hosts(device_type: str) -> int: |
| # ProcessGroup can't tell us this info so we have to infer it, assume |
| # homogeneous hardware for now |
| return get_world_size() // _MeshEnv.num_devices_per_host(device_type) |
| |
| def get_mesh_dim_by_name( |
| self, device_mesh: "DeviceMesh", mesh_dim_name: str |
| ) -> int: |
| if ( |
| device_mesh.mesh_dim_names is None |
| or len(device_mesh.mesh_dim_names) == 0 |
| ): |
| raise KeyError( |
| "No `mesh_dim_names` found.", |
| ) |
| if mesh_dim_name not in device_mesh.mesh_dim_names: |
| raise KeyError( |
| f"Mesh dimension '{mesh_dim_name}' does not exist.", |
| f"Available mesh dimensions are: mesh_dim_names={device_mesh.mesh_dim_names}", |
| ) |
| return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name)) |
| |
| def _set_mesh_dim_group_options( |
| self, |
| dim: int, |
| backend: str, |
| pg_options: Optional[ProcessGroup.Options] = None, |
| ) -> None: |
| self.mesh_dim_group_options[dim] = (backend, pg_options) |
| |
| def _get_slice_mesh_dims( |
| self, device_mesh, mesh_dim_names |
| ) -> List[Tuple[int, ...]]: |
| """ |
| Validate whether the mesh_dim_names is valid for slicing the given device_mesh. |
| If valid, return dim indexes of the slice mesh in the device mesh. |
| """ |
| if device_mesh != self.get_root_mesh(device_mesh): |
| raise RuntimeError("Cannot create a submesh from a submesh.") |
| |
| # The slice mesh_dim_names should consist either the device_mesh's mesh_dim_names |
| # or its flattened mesh's mesh_dim_names. |
| self.flatten_name_to_root_dims.setdefault(device_mesh, {}) |
| flatten_name_to_root_dims = self.flatten_name_to_root_dims[device_mesh] |
| valid_mesh_dim_names = [ |
| *device_mesh.mesh_dim_names, |
| *flatten_name_to_root_dims, |
| ] |
| |
| if not all( |
| mesh_dim_name in valid_mesh_dim_names |
| for mesh_dim_name in mesh_dim_names |
| ): |
| raise KeyError( |
| f"Invalid mesh_dim_names {mesh_dim_names} specified. " |
| f"Valid mesh_dim_names are {valid_mesh_dim_names}." |
| ) |
| |
| # Validate the order of the slice mesh dim indices. |
| # This needs to be in ascending order. |
| curr_idx = -1 |
| slice_mesh_dims = [] |
| for mesh_dim_name in mesh_dim_names: |
| if mesh_dim_name in flatten_name_to_root_dims: |
| mesh_indices = flatten_name_to_root_dims[mesh_dim_name] |
| # TODO: this doesn't allow non-contiguous slicing with flatten dim yet. next_idx |
| # should be mesh_indices[0] once we support non-contiguous slicing with flatten dim. |
| next_idx = mesh_indices[-1] |
| slice_mesh_dims.append(mesh_indices) |
| else: |
| next_idx = device_mesh.mesh_dim_names.index(mesh_dim_name) |
| slice_mesh_dims.append((next_idx,)) |
| if next_idx <= curr_idx: |
| raise KeyError( |
| f"Invalid mesh_dim_names {mesh_dim_names} specified. ", |
| f"Found mesh dim indices to slice: {slice_mesh_dims}. ", |
| "Mesh dim indices should be in ascending order.", |
| ) |
| curr_idx = next_idx |
| |
| return slice_mesh_dims |
| |
| def _get_all_submeshes( |
| self, device_mesh: "DeviceMesh", mesh_dim_name: str |
| ) -> List["DeviceMesh"]: |
| """ |
| Return all the submeshes of a given mesh dimension of the device mesh. |
| """ |
| mesh_dim = self.get_mesh_dim_by_name(device_mesh, mesh_dim_name) |
| pg_ranks_by_dim = device_mesh.mesh.swapdims(-1, mesh_dim).reshape( |
| -1, device_mesh.mesh.size(mesh_dim) |
| ) |
| |
| cur_rank = device_mesh.get_rank() |
| res_submeshes = [] |
| for mesh_1d in pg_ranks_by_dim: |
| submesh = DeviceMesh( |
| device_mesh.device_type, |
| mesh_1d, |
| mesh_dim_names=(mesh_dim_name,), |
| _init_backend=False, |
| ) |
| submesh._dim_group_infos = ( |
| [device_mesh._dim_group_infos[mesh_dim]] |
| if cur_rank in mesh_1d |
| else [] |
| ) |
| res_submeshes.append(submesh) |
| |
| return res_submeshes |
| |
| _mesh_resources: _MeshEnv = _MeshEnv() |
| |
| def _get_device_handle(device_type: str = "cuda"): |
| """ |
| Get the module corresponding to the device_type which is cuda or cuda-like device. |
| For example, when the device_type is cuda, the module `torch.cuda` is returned. |
| Return None when there is no corresponding module for device_type, otherwise |
| return the corresponding module. |
| """ |
| return getattr(torch, device_type, None) |
| |
| class DeviceMesh: |
| """ |
| DeviceMesh represents a mesh of devices, where layout of devices could be |
| represented as a n-d dimension array, and each value of the n-d dimensional |
| array is the global id of the default process group ranks. |
| |
| DeviceMesh could be used to describe the layout of devices across the cluster, |
| and serves as a proxy for communication among the device lists within the cluster. |
| |
| DeviceMesh can be used as a context manager. |
| |
| .. note:: |
| DeviceMesh follows SPMD programming model, which means the same PyTorch Python program |
| is running on all processes/ranks in the cluster. Therefore, users need to make sure the |
| `mesh` array (which describes the layout of devices) should be identical across all ranks. |
| Inconsistent `mesh` will lead to silent hang. |
| |
| Args: |
| device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". |
| mesh (ndarray): A multi-dimensional array or an integer tensor describing the layout |
| of devices, where the IDs are global IDs of the default process group. |
| |
| Returns: |
| DeviceMesh: A :class:`DeviceMesh` object representing the device layout. |
| |
| The following program runs on each process/rank in an SPMD manner. In this example, we have 2 |
| hosts with 4 GPUs each. |
| A reduction over the first dimension of mesh will reduce across |
| columns (0, 4), .. and (3, 7), a reduction over the second dimension |
| of mesh reduces across rows (0, 1, 2, 3) and (4, 5, 6, 7). |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import DeviceMesh |
| >>> |
| >>> # Initialize device mesh as (2, 4) to represent the topology |
| >>> # of cross-host(dim 0), and within-host (dim 1). |
| >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) |
| """ |
| |
| device_type: str |
| mesh: torch.Tensor |
| mesh_dim_names: Optional[Tuple[str, ...]] |
| |
| def __init__( |
| self, |
| device_type: str, |
| mesh: Union[torch.Tensor, "ArrayLike"], |
| *, |
| mesh_dim_names: Optional[Tuple[str, ...]] = None, |
| _init_backend: bool = True, |
| ) -> None: |
| self.device_type = device_type |
| if isinstance(mesh, torch.Tensor) and mesh.device.type != "cpu": |
| raise ValueError(f"`mesh` must be a CPU tensor, got {mesh}") |
| self.mesh = ( |
| mesh.detach().to(dtype=torch.int) |
| if isinstance(mesh, torch.Tensor) |
| else torch.tensor(mesh, device="cpu", dtype=torch.int) |
| ) |
| self.mesh_dim_names = tuple(mesh_dim_names) if mesh_dim_names else None |
| |
| # private field to pre-generate DeviceMesh's hash |
| self._flatten_mesh_list = tuple(self.mesh.flatten().tolist()) |
| self._thread_id = None |
| |
| # Skip process group initialization if xla device or init backend is False |
| # TODO(yeounoh) implement DeviceMesh backend and register XLA backend. |
| if device_type != "xla": |
| # always try to create default (world) pg, even if it is not initialized |
| # already. The world pg is used for device mesh identity (rank) on each |
| # process (we need to know if the current global rank is in the mesh or not). |
| if _init_backend: |
| self._get_or_create_default_group() |
| self._init_process_groups() |
| |
| if is_initialized() and get_backend() == "threaded": |
| self._thread_id = threading.get_ident() |
| |
| # calculate the coordinates of the current global rank on the mesh |
| rank_coords = (self.mesh == get_rank()).nonzero() |
| assert rank_coords.size(0) in (0, 1) |
| self._coordinate_on_dim: Optional[List[int]] = ( |
| rank_coords[0].tolist() if rank_coords.size(0) > 0 else None |
| ) |
| |
| def _get_or_create_default_group(self): |
| default_initialized = is_initialized() |
| if not default_initialized: |
| init_process_group() |
| |
| world_size = get_world_size() |
| if self.mesh.numel() > world_size: |
| raise RuntimeError( |
| f"Mesh should not be bigger than default world size, but found {self.mesh.numel()} ranks!" |
| ) |
| |
| device_handle = _get_device_handle(self.device_type) |
| # TODO: if user want to pass pg_options, offer a way to do it |
| if not default_initialized and device_handle: |
| # automatically set the current cuda/cuda-like device base on num of gpu devices available in each host |
| # NOTE: This device selection would only work for homogeneous hardware. |
| num_devices_per_host = device_handle.device_count() |
| if ( |
| world_size > num_devices_per_host |
| and world_size % num_devices_per_host != 0 |
| ): |
| raise RuntimeError( |
| f"DeviceMesh only support homogeneous hardware, but found " |
| f"{world_size} ranks and {num_devices_per_host} {self.device_type} devices!" |
| ) |
| device_handle.set_device(get_rank() % num_devices_per_host) |
| |
| return _get_default_group() |
| |
| def _init_process_groups(self): |
| # tag/ranks/group_name associated with each mesh dimension, each |
| # mesh dimension should have one sub-group per rank |
| # |
| # TODO(yifu): remove tag and ranks once we fully migrate to native |
| # functional collectives. See details in: |
| # https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208 |
| dim_group_infos: List[Tuple[str, List[int], str]] = [] |
| |
| if self.mesh.ndim == 1 and self.mesh.numel() == get_world_size(): |
| # Append the default pg to the first dim groups only if the default pg is compatible with `self.device_type`. |
| # Otherwise, create new pg. |
| default_group = _get_default_group() |
| ranks = list(range(get_world_size())) |
| dim_group = ( |
| new_group(backend="cpu:gloo,cuda:nccl", ranks=ranks) |
| if torch.cuda.is_available() |
| and get_backend(default_group) == "gloo" |
| else default_group |
| ) |
| dim_group_infos.append( |
| ( |
| _get_group_tag(dim_group), |
| ranks, |
| dim_group.group_name, |
| ) |
| ) |
| else: |
| # create sub pgs base on the mesh argument specified |
| for dim in range(self.mesh.ndim): |
| # swap the current dim to the last dim |
| # then reshape to flatten out other dims |
| pg_ranks_by_dim = self.mesh.swapdims(-1, dim).reshape( |
| -1, self.mesh.size(dim) |
| ) |
| # multi-dim mesh, create subgroups by looping over the pg_ranks |
| # for each dim and append the groups |
| for dim_mesh in pg_ranks_by_dim: |
| subgroup_ranks = dim_mesh.tolist() |
| |
| # Respect dim group options specified via _MeshEnv.set_dim_group_options(). |
| # Inherit from the parent group if no options are specified for the group. |
| if dim in _mesh_resources.mesh_dim_group_options: |
| ( |
| backend, |
| pg_options, |
| ) = _mesh_resources.mesh_dim_group_options[dim] |
| else: |
| backend, pg_options = None, None |
| |
| # We temporarily revert the re-use subgroup, since it breaks two internal tests. |
| # Temporarily reverting to resolve test timeout while root-causing. |
| # TODO: Add two tests to cover internal tests scenarios and re-enable reuse subgroup if exists. |
| dim_group = new_group( |
| ranks=subgroup_ranks, |
| backend=backend, |
| pg_options=pg_options, |
| ) |
| |
| # only add to dim_groups if the current rank in the subgroup |
| if self.get_rank() in subgroup_ranks: |
| if len(dim_group_infos) > dim: |
| raise RuntimeError( |
| f"Each device mesh dimension should get only one process group, but got {self.get_rank()} " |
| f"in {subgroup_ranks}!" |
| ) |
| dim_group_infos.append( |
| ( |
| _get_group_tag(not_none(dim_group)), |
| subgroup_ranks, |
| dim_group.group_name, |
| ) |
| ) |
| self._dim_group_infos = dim_group_infos |
| |
| def __enter__(self) -> "DeviceMesh": |
| # set this mesh as the current mesh in mesh env |
| _mesh_resources.mesh_stack.append(self) |
| return self |
| |
| # pyre-fixme[2]: Parameter must be annotated. |
| def __exit__(self, exc_type, exc_value, exc_traceback) -> None: |
| # pop this mesh from mesh env |
| _mesh_resources.mesh_stack.pop() |
| |
| def __repr__(self) -> str: |
| device_mesh_repr = ( |
| f"DeviceMesh('{self.device_type}', {self.mesh.tolist()})" |
| if not self.mesh_dim_names |
| else f"DeviceMesh('{self.device_type}', {self.mesh.tolist()}, mesh_dim_names={self.mesh_dim_names})" |
| ) |
| return device_mesh_repr |
| |
| def __hash__(self): |
| # lazily compute hash |
| self._hash = getattr(self, "_hash", None) |
| if not self._hash: |
| self._hash = hash( |
| ( |
| self._flatten_mesh_list, |
| self.mesh.shape, |
| self.device_type, |
| self.mesh_dim_names, |
| self._thread_id, |
| ) |
| ) |
| return self._hash |
| |
| def __eq__(self, other: object) -> bool: |
| if not isinstance(other, DeviceMesh): |
| return False |
| if id(self) == id(other): |
| return True |
| else: |
| return ( |
| self._flatten_mesh_list == other._flatten_mesh_list |
| and self.mesh.shape == other.mesh.shape |
| and self.device_type == other.device_type |
| and self.mesh_dim_names == other.mesh_dim_names |
| and self._thread_id == other._thread_id |
| ) |
| |
| def __getitem__( |
| self, mesh_dim_names: Union[str, Tuple[str, ...]] |
| ) -> "DeviceMesh": |
| """ |
| Slice the current DeviceMesh based on the mesh_dim_names given to create a submesh. |
| The submesh created consists of the dimensions and the communicators indicated by |
| ``mesh_dim_names`` |
| |
| Args: |
| mesh_dim_names (Union[str, Tuple[str]]): the name or the tuple of names of the |
| mesh dimension of the DeviceMesh to create the submesh for. |
| Returns: |
| A :class:`DeviceMesh` object |
| |
| The following program runs on each process/rank in an SPMD manner in a world size of 8. |
| In the first example: |
| Calling mesh_2d["tp"] on rank 0, 1, 2, 3 returns a 1D submesh of DeviceMesh:([0, 1, 2, 3]). |
| Calling mesh_2d["tp"] on rank 4, 5, 6, 7 returns a 1D submesh of DeviceMesh:([4, 5, 6, 7]). |
| Calling mesh_2d["dp"] on rank 0, 4 returns a 1D submesh of DeviceMesh:([0, 4]). |
| Calling mesh_2d["dp"] on rank 1, 5 returns a 1D submesh of DeviceMesh:([1, 5]). |
| Calling mesh_2d["dp"] on rank 2, 6 returns a 1D submesh of DeviceMesh:([2, 6]). |
| Calling mesh_2d["dp"] on rank 3, 7 returns a 1D submesh of DeviceMesh:([3, 7]). |
| |
| In the second example: |
| Calling mesh_3d["dp", "cp"] on rank 0, 1, 4, 5 returns a 2D submesh of DeviceMesh:([[0, 1], [4, 5]]). |
| Calling mesh_3d["dp", "cp"] on rank 2, 3, 6, 7 returns a 2D submesh of DeviceMesh:([[2, 3], [6, 7]]). |
| Calling mesh_3d["cp", "dp"] on rank 0, 1, 4, 5 returns a 2D submesh of DeviceMesh:([[0, 4], [1, 5]]). |
| Calling mesh_3d["cp", "dp"] on rank 2, 3, 6, 7 returns a 2D submesh of DeviceMesh:([[2, 6], [3, 7]]). |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import DeviceMesh |
| >>> |
| >>> # Initialize a 2D device mesh as (2, 4) to represent the topology |
| >>> # of cross-host(dim 0), and within-host (dim 1). |
| >>> mesh_2d = init_device_mesh(device_type="cuda", (2,4), mesh_dim_names=("dp", "tp")) |
| >>> tp_mesh = mesh_2d["tp"] |
| >>> dp_mesh = mesh_2d["dp"] |
| >>> |
| >>> # Initialize a 3D mesh. |
| >>> mesh_3d = init_device_mesh(device_type="cuda", (2,2,2), mesh_dim_names=("dp", "pp", "cp")) |
| >>> # The order of the mesh_dim_names provided deteremines the order of dimensions in the submesh. |
| >>> dp_cp_mesh = mesh_3d["dp", "cp"] |
| >>> cp_dp_mesh = mesh_3d["cp", "dp"] |
| """ |
| if not self.mesh_dim_names: |
| raise RuntimeError("Cannot slice a DeviceMesh without mesh_dim_names!") |
| |
| mesh_dim_names = ( |
| (mesh_dim_names,) if isinstance(mesh_dim_names, str) else mesh_dim_names |
| ) |
| |
| if mesh_dim_names == self.mesh_dim_names: |
| return self |
| else: |
| slice_mesh_dims = _mesh_resources._get_slice_mesh_dims( |
| self, mesh_dim_names |
| ) |
| submesh = _mesh_resources.create_sub_mesh( |
| self, mesh_dim_names, slice_mesh_dims |
| ) |
| return submesh |
| |
| def get_group(self, mesh_dim: Optional[Union[int, str]] = None) -> ProcessGroup: |
| """ |
| Returns the single ProcessGroup specified by mesh_dim, or, if mesh_dim is not specified and the |
| DeviceMesh is 1-dimensional, returns the only ProcessGroup in the mesh. |
| |
| Args: |
| mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index |
| of the mesh dimension. Default is None. |
| |
| Returns: |
| A :class:`ProcessGroup` object. |
| """ |
| if not hasattr(self, "_dim_group_infos"): |
| raise RuntimeError("DeviceMesh process groups not initialized!") |
| |
| if self.mesh.ndim > 1 and mesh_dim is None: |
| raise RuntimeError( |
| f"Found the DeviceMesh have {self.mesh.ndim} dimensions", |
| "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.", |
| "If you want to get the list of all the ProcessGroups in the DeviceMesh," |
| "please use `get_all_groups()` instead.", |
| ) |
| |
| # Quick return if the current device_mesh is a 1D mesh. |
| if self.mesh.ndim == 1 and mesh_dim is None: |
| return not_none( |
| _find_pg_by_ranks_and_tag(*self._dim_group_infos[0][:2]) # type: ignore[index] |
| ) |
| |
| root_mesh = _mesh_resources.get_root_mesh(self) |
| root_to_flatten_mapping = _mesh_resources.root_to_flatten_mapping.get( |
| root_mesh, None |
| ) |
| if root_to_flatten_mapping and mesh_dim in root_to_flatten_mapping.keys(): |
| dim_group_infos = root_to_flatten_mapping[mesh_dim]._dim_group_infos[0][:2] # type: ignore[index] |
| return not_none(_find_pg_by_ranks_and_tag(*dim_group_infos)) |
| else: |
| mesh_dim = ( |
| _mesh_resources.get_mesh_dim_by_name(self, mesh_dim) |
| if isinstance(mesh_dim, str) |
| else mesh_dim |
| ) |
| return not_none( |
| _find_pg_by_ranks_and_tag(*self._dim_group_infos[mesh_dim][:2]) # type: ignore[index] |
| ) |
| |
| def get_all_groups(self) -> List[ProcessGroup]: |
| """ |
| Returns a list of ProcessGroups for all mesh dimensions. |
| |
| Returns: |
| A list of :class:`ProcessGroup` object. |
| """ |
| return [self.get_group(i) for i in range(self.mesh.ndim)] |
| |
| @staticmethod |
| def from_group( |
| group: Union[ProcessGroup, List[ProcessGroup]], |
| device_type: str, |
| mesh: Optional[Union[torch.Tensor, "ArrayLike"]] = None, |
| *, |
| mesh_dim_names: Optional[Tuple[str, ...]] = None, |
| ) -> "DeviceMesh": |
| """ |
| Constructs a :class:`DeviceMesh` with ``device_type`` from an |
| existing :class:`ProcessGroup`. |
| |
| The constructed device mesh has number of dimensions equal to the |
| number of groups passed. If more than one group is passed, then the |
| ``mesh`` argument is required. |
| """ |
| if isinstance(group, ProcessGroup): |
| group_ranks = get_process_group_ranks(group) |
| if ( |
| isinstance(mesh, torch.Tensor) and mesh.tolist() != group_ranks |
| ) or (mesh is not None and mesh != group_ranks): |
| raise ValueError( |
| f"Invalid mesh {str(mesh)} for ProcessGroup with ranks {group_ranks}" |
| ) |
| mesh = torch.tensor(group_ranks, device="cpu", dtype=torch.int) |
| device_mesh = DeviceMesh( |
| device_type, |
| mesh, |
| mesh_dim_names=mesh_dim_names, |
| _init_backend=False, |
| ) |
| device_mesh._dim_group_infos = [ |
| (_get_group_tag(group), group_ranks, group.group_name) |
| ] |
| return device_mesh |
| groups = list(group) |
| if len(groups) == 0: |
| raise ValueError("Expects at least one ProcessGroup to be passed") |
| if mesh is None: |
| raise ValueError("Must pass mesh if passing multiple ProcessGroups") |
| mesh = ( |
| mesh.detach().to(dtype=torch.int, device="cpu") |
| if isinstance(mesh, torch.Tensor) |
| else torch.tensor(mesh, device="cpu", dtype=torch.int) |
| ) |
| if mesh.ndim != len(groups): |
| raise ValueError( |
| "Expects mesh with ndim equal to number of ProcessGroups but got " |
| f"mesh {mesh.tolist()} and {len(groups)} ProcessGroups" |
| ) |
| device_mesh = DeviceMesh( |
| device_type, mesh, mesh_dim_names=mesh_dim_names, _init_backend=False |
| ) |
| device_mesh._dim_group_infos = [ |
| ( |
| _get_group_tag(group), |
| get_process_group_ranks(group), |
| group.group_name, |
| ) |
| for group in groups |
| ] |
| return device_mesh |
| |
| def size(self, mesh_dim: Optional[int] = None) -> int: |
| return self.mesh.numel() if mesh_dim is None else self.mesh.size(mesh_dim) |
| |
| @property |
| def ndim(self) -> int: |
| return self.mesh.ndim |
| |
| @property |
| def shape(self) -> Tuple[int, ...]: |
| return tuple(self.mesh.shape) |
| |
| def get_rank(self) -> int: |
| """ |
| Returns the current global rank. |
| """ |
| return get_rank() |
| |
| def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int: |
| """ |
| Returns the local rank of the given mesh_dim of the DeviceMesh. |
| |
| Args: |
| mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index |
| of the mesh dimension. Default is None. |
| |
| Returns: |
| An integer denotes the local rank. |
| |
| The following program runs on each process/rank in an SPMD manner. In this example, we have 2 |
| hosts with 4 GPUs each. |
| Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 0, 1, 2, 3 would return 0. |
| Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 4, 5, 6, 7 would return 1. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 0, 4 would return 0. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 1, 5 would return 1. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 2, 6 would return 2. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 3, 7 would return 3. |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import DeviceMesh |
| >>> |
| >>> # Initialize device mesh as (2, 4) to represent the topology |
| >>> # of cross-host(dim 0), and within-host (dim 1). |
| >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) |
| """ |
| if self.ndim > 1 and mesh_dim is None: |
| raise RuntimeError( |
| f"Found the DeviceMesh have {self.mesh.ndim} dimensions", |
| "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.", |
| ) |
| elif mesh_dim is None: |
| mesh_dim = 0 |
| |
| mesh_dim_group = not_none(self.get_group(mesh_dim)) |
| assert isinstance( |
| mesh_dim_group, ProcessGroup |
| ), "We expect ProcessGroup before calling `get_rank`!" |
| return not_none(get_rank(mesh_dim_group)) |
| |
| def get_coordinate(self) -> Optional[List[int]]: |
| """ |
| Return the relative indices of this rank relative to all |
| dimensions of the mesh. If this rank is not part of the mesh, return None. |
| """ |
| return self._coordinate_on_dim if self._coordinate_on_dim else None |
| |
| def _flatten(self, mesh_dim_name: Optional[str] = None) -> "DeviceMesh": |
| """ |
| Returns a 1D DeviceMesh by flattening the current DeviceMesh. |
| |
| If no mesh_dim_name is provided, the default is a string concatentaing the mesh_dim_names of the |
| given submesh with each mesh_dim_name separated by "_". For example, if we have a 3D mesh |
| DeviceMesh([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], mesh_dim_names=("dp", "cp", "tp")), calling |
| mesh_3d["dp", "cp"]._flatten() will create a 1D submesh DeviceMesh([0, 1, 2, 3], mesh_dim_names=("dp_cp",)) |
| on rank 0, 1, 2, 3 and a 1D submesh DeviceMesh([4, 5, 6, 7], mesh_dim_names=("dp_cp",)) on rank 4, 5, 6, 7. |
| |
| After the flattened dimension is created, to access the flattened dimesnion in mesh_3d, one can use the |
| existing slicing method to obtain the flattened mesh through calling mesh_3d["dp_cp"]. |
| """ |
| if not self.mesh_dim_names: |
| raise RuntimeError( |
| "Cannot flatten a DeviceMesh without mesh_dim_names!" |
| ) |
| |
| return _mesh_resources.create_flatten_mesh(self, mesh_dim_name) |
| |
| def init_device_mesh( |
| device_type: str, |
| mesh_shape: Tuple[int, ...], |
| *, |
| mesh_dim_names: Optional[Tuple[str, ...]] = None, |
| ) -> DeviceMesh: |
| """ |
| Initializes a `DeviceMesh` based on `device_type`, `mesh_shape`, and `mesh_dim_names` parameters. |
| |
| This creates a DeviceMesh with an n-dimensional array layout, where `n` is the length of `mesh_shape`. |
| If `mesh_dim_names` is provided, each dimension is labeled as `mesh_dim_names[i]`. |
| |
| .. note:: |
| `init_device_mesh` follows SPMD programming model, meaning the same PyTorch Python program |
| runs on all processes/ranks in the cluster. Ensure `mesh_shape` (the dimensions of the nD array |
| describing device layout) is identical across all ranks. Inconsistent `mesh_shape` may lead to hanging. |
| |
| .. note:: |
| If no process group is found, init_device_mesh will initialize distributed process group/groups |
| required for distributed communications behind the scene. |
| |
| Args: |
| device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". |
| Passing in a device type with a GPU index, such as "cuda:0", is not allowed. |
| mesh_shape (Tuple[int]): A tuple defining the dimensions of the multi-dimensional array |
| describing the layout of devices. |
| mesh_dim_names (Tuple[str], optional): A tuple of mesh dimension names to assign to each dimension |
| of the multi-dimensional array describing the layout of devices. Its length must match the length |
| of `mesh_shape`. Each string in `mesh_dim_names` must be unique. |
| |
| Returns: |
| DeviceMesh: A :class:`DeviceMesh` object representing the device layout. |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import init_device_mesh |
| >>> |
| >>> mesh_1d = init_device_mesh("cuda", mesh_shape=(8,)) |
| >>> mesh_2d = init_device_mesh("cuda", mesh_shape=(2, 8), mesh_dim_names=("dp", "tp")) |
| |
| """ |
| if mesh_dim_names is not None: |
| if len(set(mesh_dim_names)) != len(mesh_dim_names): |
| raise RuntimeError( |
| "Each mesh_dim_name must be unique.", |
| f"Found repeated mesh_dim_name in mesh_dim_names {mesh_dim_names}", |
| ) |
| |
| if len(mesh_shape) != len(mesh_dim_names): |
| raise RuntimeError( |
| "mesh_shape and mesh_dim_names should have same length!", |
| f"Found len(mesh_dim_names): {len(mesh_dim_names)} and len(mesh_shape):{len(mesh_shape)}.", |
| ) |
| |
| # assume valid device types are all letters |
| if device_type and not device_type.isalpha(): |
| raise RuntimeError( |
| f"Device type with GPU index is not supported but got {device_type}. ", |
| "If you maintained a 'torch.device' object, it's recommended to pass in 'device.type'.", |
| ) |
| |
| # Always initialize the mesh's tensor on CPU, regardless of what the |
| # external device type has been set to be (e.g. meta) |
| with torch.device("cpu"): |
| mesh = torch.arange(math.prod(mesh_shape), dtype=torch.int).view(mesh_shape) |
| device_mesh = DeviceMesh( |
| device_type=device_type, |
| mesh=mesh, |
| mesh_dim_names=mesh_dim_names, |
| ) |
| |
| return device_mesh |