blob: 15035f460e7388312a8703dbdb94b29b05a2b1cd [file] [log] [blame]
import sys
import torch
from torch._C import _add_docstr, _special # type: ignore
from torch._torch_docs import common_args # type: ignore
Tensor = torch.Tensor
gammaln = _add_docstr(_special.special_gammaln,
r"""
gammaln(input, *, out=None) -> Tensor
Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`.
.. math::
\text{out}_{i} = \ln \Gamma(|\text{input}_{i}|)
""" + """
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.arange(0.5, 2, 0.5)
>>> torch.special.gammaln(a)
tensor([ 0.5724, 0.0000, -0.1208])
""".format(**common_args))
erf = _add_docstr(_special.special_erf,
r"""
erf(input, *, out=None) -> Tensor
Computes the error function of :attr:`input`. The error function is defined as follows:
.. math::
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
""" + r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.erf(torch.tensor([0, -1., 10.]))
tensor([ 0.0000, -0.8427, 1.0000])
""".format(**common_args))
erfc = _add_docstr(_special.special_erfc,
r"""
erfc(input, *, out=None) -> Tensor
Computes the complementary error function of :attr:`input`.
The complementary error function is defined as follows:
.. math::
\mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
""" + r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.erfc(torch.tensor([0, -1., 10.]))
tensor([ 1.0000, 1.8427, 0.0000])
""".format(**common_args))
erfinv = _add_docstr(_special.special_erfinv,
r"""
erfinv(input, *, out=None) -> Tensor
Computes the inverse error function of :attr:`input`.
The inverse error function is defined in the range :math:`(-1, 1)` as:
.. math::
\mathrm{erfinv}(\mathrm{erf}(x)) = x
""" + r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.erfinv(torch.tensor([0, 0.5, -1.]))
tensor([ 0.0000, 0.4769, -inf])
""".format(**common_args))