|  | #include "caffe2/core/context_gpu.h" | 
|  | #include "caffe2/operators/reduction_ops.h" | 
|  | #include "caffe2/utils/conversions.h" | 
|  |  | 
|  | #include <cub/cub.cuh> | 
|  |  | 
|  | namespace caffe2 { | 
|  |  | 
|  | REGISTER_CUDA_OPERATOR(SumElements, SumElementsOp<float, CUDAContext>); | 
|  | REGISTER_CUDA_OPERATOR(SumElementsInt, SumElementsIntOp<int, CUDAContext>); | 
|  | REGISTER_CUDA_OPERATOR(SumSqrElements, SumSqrElementsOp<CUDAContext>); | 
|  | REGISTER_CUDA_OPERATOR(RowwiseMax, MaxReductionOp<float, CUDAContext, true>); | 
|  | REGISTER_CUDA_OPERATOR(ColwiseMax, MaxReductionOp<float, CUDAContext, false>); | 
|  | REGISTER_CUDA_OPERATOR( | 
|  | RowwiseMaxGradient, | 
|  | MaxReductionGradientOp<float, CUDAContext, true>) | 
|  | REGISTER_CUDA_OPERATOR( | 
|  | ColwiseMaxGradient, | 
|  | MaxReductionGradientOp<float, CUDAContext, false>) | 
|  |  | 
|  | REGISTER_CUDA_OPERATOR( | 
|  | SumElementsGradient, | 
|  | SumElementsGradientOp<float, CUDAContext>); | 
|  |  | 
|  | template <typename T> | 
|  | __global__ void | 
|  | SumElementsGradientKernel(bool average, const int N, const T* dY, T* dX) { | 
|  | const T value = average ? (*dY) / N : *dY; | 
|  | CUDA_1D_KERNEL_LOOP(i, N) { | 
|  | dX[i] = value; | 
|  | } | 
|  | } | 
|  |  | 
|  | __global__ void rowwise_max_gradient_kernel( | 
|  | const int batch_size, | 
|  | const int M, | 
|  | const int N, | 
|  | const float* X, | 
|  | const float* Y, | 
|  | const float* dY, | 
|  | float* dX) { | 
|  | const int input_size = M * N; | 
|  | CUDA_1D_KERNEL_LOOP(i, batch_size * M * N) { | 
|  | const int b_i = i / input_size; | 
|  | const int b_n = i / input_size / N; | 
|  | const int y_index = b_i * M + b_n; | 
|  | if (X[i] == Y[y_index]) { | 
|  | dX[i] = dY[y_index]; | 
|  | } else { | 
|  | dX[i] = 0.0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <> | 
|  | bool SumSqrElementsOp<CUDAContext>::RunOnDevice() { | 
|  | return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0)); | 
|  | } | 
|  |  | 
|  |  | 
|  | __global__ void colwise_max_gradient_kernel( | 
|  | const int batch_size, | 
|  | const int M, | 
|  | const int N, | 
|  | const float* X, | 
|  | const float* Y, | 
|  | const float* dY, | 
|  | float* dX) { | 
|  | const int input_size = M * N; | 
|  | CUDA_1D_KERNEL_LOOP(i, batch_size * M * N) { | 
|  | const int b_i = i / input_size; | 
|  | const int b_n = i % input_size % N; | 
|  | const int y_index = b_i * N + b_n; | 
|  | if (X[i] == Y[y_index]) { | 
|  | dX[i] = dY[y_index]; | 
|  | } else { | 
|  | dX[i] = 0.0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <> | 
|  | bool SumElementsGradientOp<float, CUDAContext>::RunOnDevice() { | 
|  | auto& X = Input(0); | 
|  | auto& dY = Input(1); | 
|  | DCHECK_EQ(dY.numel(), 1); | 
|  |  | 
|  | auto* dX = Output(0, X.sizes(), at::dtype<float>()); | 
|  | SumElementsGradientKernel<float> | 
|  | <<<CAFFE_GET_BLOCKS(X.numel()), | 
|  | CAFFE_CUDA_NUM_THREADS, | 
|  | 0, | 
|  | context_.cuda_stream()>>>( | 
|  | average_, | 
|  | X.numel(), | 
|  | dY.data<float>(), | 
|  | dX->template mutable_data<float>()); | 
|  | C10_CUDA_KERNEL_LAUNCH_CHECK(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T, class Context, bool ROWWISE> | 
|  | bool MaxReductionGradientOp<T, Context, ROWWISE>::RunOnDevice() { | 
|  | auto& X = Input(0); | 
|  | auto& Y = Input(1); | 
|  | auto& dY = Input(2); | 
|  |  | 
|  | auto* dX = Output(0, X.sizes(), at::dtype<T>()); | 
|  |  | 
|  | CAFFE_ENFORCE_EQ(X.dim(), 3); | 
|  |  | 
|  | const int batch_size = X.dim32(0); | 
|  | const int M = X.dim32(1); | 
|  | const int N = X.dim32(2); | 
|  |  | 
|  | const T* Xdata = X.template data<T>(); | 
|  | const T* Ydata = Y.template data<T>(); | 
|  | const T* dYdata = dY.template data<T>(); | 
|  | T* dXdata = dX->template mutable_data<T>(); | 
|  |  | 
|  | const int input_size = M * N; | 
|  | if (ROWWISE) { | 
|  | rowwise_max_gradient_kernel<<< | 
|  | CAFFE_GET_BLOCKS(batch_size * input_size), | 
|  | CAFFE_CUDA_NUM_THREADS, | 
|  | 0, | 
|  | context_.cuda_stream()>>>( | 
|  | batch_size, M, N, Xdata, Ydata, dYdata, dXdata); | 
|  | C10_CUDA_KERNEL_LAUNCH_CHECK(); | 
|  | } else { | 
|  | colwise_max_gradient_kernel<<< | 
|  | CAFFE_GET_BLOCKS(batch_size * input_size), | 
|  | CAFFE_CUDA_NUM_THREADS, | 
|  | 0, | 
|  | context_.cuda_stream()>>>( | 
|  | batch_size, M, N, Xdata, Ydata, dYdata, dXdata); | 
|  | C10_CUDA_KERNEL_LAUNCH_CHECK(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // namespace caffe2 |