|  | #include "caffe2/operators/abs_op.h" | 
|  | #include "caffe2/utils/eigen_utils.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <functional> | 
|  |  | 
|  | namespace caffe2 { | 
|  |  | 
|  | template <> | 
|  | template <typename T> | 
|  | bool AbsGradientFunctor<CPUContext>::Forward( | 
|  | const std::vector<int>& X_dims, | 
|  | const std::vector<int>& /* dY_dims */, | 
|  | const T* X, | 
|  | const T* dY, | 
|  | T* dX, | 
|  | CPUContext* /* context */) const { | 
|  | const int size = std::accumulate( | 
|  | // NOLINTNEXTLINE(modernize-use-transparent-functors) | 
|  | X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); | 
|  | ConstEigenVectorArrayMap<T> dY_arr(dY, size); | 
|  | ConstEigenVectorArrayMap<T> X_arr(X, size); | 
|  | EigenVectorMap<T>(dX, size) = | 
|  | (X_arr == T(0)).select(T(0), (X_arr > T(0)).select(dY_arr, -dY_arr)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) | 
|  | REGISTER_CPU_OPERATOR( | 
|  | Abs, | 
|  | UnaryElementwiseOp<TensorTypes<float>, CPUContext, AbsFunctor<CPUContext>>); | 
|  | // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) | 
|  | REGISTER_CPU_OPERATOR( | 
|  | AbsGradient, | 
|  | BinaryElementwiseOp< | 
|  | TensorTypes<float>, | 
|  | CPUContext, | 
|  | AbsGradientFunctor<CPUContext>>); | 
|  |  | 
|  | // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) | 
|  | OPERATOR_SCHEMA(Abs) | 
|  | .NumInputs(1) | 
|  | .NumOutputs(1) | 
|  | .IdenticalTypeAndShape() | 
|  | .SetDoc(R"DOC( | 
|  | Calculates the absolute value of the given input tensor, element-wise. | 
|  |  | 
|  | Github Links: | 
|  |  | 
|  | - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/abs_op.cc | 
|  |  | 
|  | <details> | 
|  |  | 
|  | <summary> <b>Example</b> </summary> | 
|  |  | 
|  | **Code** | 
|  |  | 
|  | ``` | 
|  | workspace.ResetWorkspace() | 
|  |  | 
|  | op = core.CreateOperator( | 
|  | "Abs", | 
|  | ["X"], | 
|  | ["Y"] | 
|  | ) | 
|  |  | 
|  | workspace.FeedBlob("X", np.random.randn(5).astype(np.float32)) | 
|  | print("X:", workspace.FetchBlob("X")) | 
|  | workspace.RunOperatorOnce(op) | 
|  | print("Y:", workspace.FetchBlob("Y")) | 
|  |  | 
|  | ``` | 
|  |  | 
|  | **Result** | 
|  |  | 
|  | ``` | 
|  |  | 
|  | X: [ 0.3005476   1.551666   -1.3591481   0.39191285 -0.21866608] | 
|  | Y: [0.3005476  1.551666   1.3591481  0.39191285 0.21866608] | 
|  |  | 
|  | ``` | 
|  |  | 
|  | </details> | 
|  |  | 
|  | )DOC") | 
|  | .Input(0, "X", "*(type: Tensor<float>)* Input tensor.") | 
|  | .Output( | 
|  | 0, | 
|  | "Y", | 
|  | "*(type: Tensor`<float>`)* Absolute value of input element-wise.") | 
|  | .InheritOnnxSchema(); | 
|  |  | 
|  | // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) | 
|  | OPERATOR_SCHEMA(AbsGradient) | 
|  | .NumInputs(2) | 
|  | .NumOutputs(1) | 
|  | .IdenticalTypeAndShapeOfInput(0); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class GetAbsGradient : public GradientMakerBase { | 
|  | using GradientMakerBase::GradientMakerBase; | 
|  | std::vector<OperatorDef> GetGradientDefs() override { | 
|  | return SingleGradientDef( | 
|  | "AbsGradient", | 
|  | "", | 
|  | std::vector<std::string>{I(0), GO(0)}, | 
|  | std::vector<std::string>{GI(0)}); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) | 
|  | REGISTER_GRADIENT(Abs, GetAbsGradient); | 
|  |  | 
|  | } // namespace caffe2 |