| from numbers import Number |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import broadcast_all |
| |
| |
| class Laplace(Distribution): |
| r""" |
| Creates a Laplace distribution parameterized by :attr:`loc` and :attr:`scale`. |
| |
| Example:: |
| |
| >>> m = Laplace(torch.tensor([0.0]), torch.tensor([1.0])) |
| >>> m.sample() # Laplace distributed with loc=0, scale=1 |
| tensor([ 0.1046]) |
| |
| Args: |
| loc (float or Tensor): mean of the distribution |
| scale (float or Tensor): scale of the distribution |
| """ |
| arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} |
| support = constraints.real |
| has_rsample = True |
| |
| @property |
| def mean(self): |
| return self.loc |
| |
| @property |
| def variance(self): |
| return 2 * self.scale.pow(2) |
| |
| @property |
| def stddev(self): |
| return (2 ** 0.5) * self.scale |
| |
| def __init__(self, loc, scale, validate_args=None): |
| self.loc, self.scale = broadcast_all(loc, scale) |
| if isinstance(loc, Number) and isinstance(scale, Number): |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self.loc.size() |
| super(Laplace, self).__init__(batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Laplace, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.loc = self.loc.expand(batch_shape) |
| new.scale = self.scale.expand(batch_shape) |
| super(Laplace, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| def rsample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| finfo = torch.finfo(self.loc.dtype) |
| if torch._C._get_tracing_state(): |
| # [JIT WORKAROUND] lack of support for .uniform_() |
| u = torch.rand(shape, dtype=self.loc.dtype, device=self.loc.device) * 2 - 1 |
| return self.loc - self.scale * u.sign() * torch.log1p(-u.abs().clamp(min=finfo.tiny)) |
| u = self.loc.new(shape).uniform_(finfo.eps - 1, 1) |
| # TODO: If we ever implement tensor.nextafter, below is what we want ideally. |
| # u = self.loc.new(shape).uniform_(self.loc.nextafter(-.5, 0), .5) |
| return self.loc - self.scale * u.sign() * torch.log1p(-u.abs()) |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return -torch.log(2 * self.scale) - torch.abs(value - self.loc) / self.scale |
| |
| def cdf(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return 0.5 - 0.5 * (value - self.loc).sign() * torch.expm1(-(value - self.loc).abs() / self.scale) |
| |
| def icdf(self, value): |
| term = value - 0.5 |
| return self.loc - self.scale * (term).sign() * torch.log1p(-2 * term.abs()) |
| |
| def entropy(self): |
| return 1 + torch.log(2 * self.scale) |