| import math |
| |
| import torch |
| from torch._six import inf |
| from torch.distributions import constraints |
| from torch.distributions.transforms import AbsTransform |
| from torch.distributions.cauchy import Cauchy |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| |
| |
| class HalfCauchy(TransformedDistribution): |
| r""" |
| Creates a half-normal distribution parameterized by `scale` where:: |
| |
| X ~ Cauchy(0, scale) |
| Y = |X| ~ HalfCauchy(scale) |
| |
| Example:: |
| |
| >>> m = HalfCauchy(torch.tensor([1.0])) |
| >>> m.sample() # half-cauchy distributed with scale=1 |
| tensor([ 2.3214]) |
| |
| Args: |
| scale (float or Tensor): scale of the full Cauchy distribution |
| """ |
| arg_constraints = {'scale': constraints.positive} |
| support = constraints.positive |
| has_rsample = True |
| |
| def __init__(self, scale, validate_args=None): |
| base_dist = Cauchy(0, scale) |
| super(HalfCauchy, self).__init__(base_dist, AbsTransform(), |
| validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(HalfCauchy, _instance) |
| return super(HalfCauchy, self).expand(batch_shape, _instance=new) |
| |
| @property |
| def scale(self): |
| return self.base_dist.scale |
| |
| @property |
| def mean(self): |
| return self.base_dist.mean |
| |
| @property |
| def variance(self): |
| return self.base_dist.variance |
| |
| def log_prob(self, value): |
| value = torch.as_tensor(value, dtype=self.base_dist.scale.dtype, |
| device=self.base_dist.scale.device) |
| log_prob = self.base_dist.log_prob(value) + math.log(2) |
| log_prob[value.expand(log_prob.shape) < 0] = -inf |
| return log_prob |
| |
| def cdf(self, value): |
| return 2 * self.base_dist.cdf(value) - 1 |
| |
| def icdf(self, prob): |
| return self.base_dist.icdf((prob + 1) / 2) |
| |
| def entropy(self): |
| return self.base_dist.entropy() - math.log(2) |