| #include <benchmark/benchmark.h> |
| #include <torch/csrc/jit/tensorexpr/analysis.h> |
| #include <torch/csrc/jit/tensorexpr/ir_simplifier.h> |
| #include <torch/csrc/jit/tensorexpr/loopnest.h> |
| #include <torch/csrc/jit/tensorexpr/tensor.h> |
| #include <torch/torch.h> |
| |
| #include <immintrin.h> |
| |
| namespace te = torch::jit::tensorexpr; |
| |
| namespace { |
| class Reduce1D : public benchmark::Fixture { |
| public: |
| void SetUp(const benchmark::State& state) override { |
| at::set_num_threads(1); |
| torch::manual_seed(0x12345678); |
| M = state.range(0); |
| A = torch::randn({M}); |
| B = torch::zeros({}); |
| } |
| |
| void TearDown(benchmark::State& state) override { |
| state.counters["BYTES"] = benchmark::Counter(uint64_t(state.iterations()) * M * sizeof(float), |
| benchmark::Counter::kIsRate); |
| } |
| |
| int M; |
| at::Tensor A; |
| at::Tensor B; |
| }; |
| |
| } // namespace |
| |
| BENCHMARK_DEFINE_F(Reduce1D, Torch)(benchmark::State& state) { |
| for (auto _ : state) { |
| B = torch::sum(A, {0}); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, Torch)->Args({1 << 24}); |
| |
| #define VALIDATE(F, A, B) ValidateFunc((F), #F, (A), (B)) |
| |
| template <typename Func> |
| void ValidateFunc(Func func, const std::string& func_name, at::Tensor& A, at::Tensor& B) { |
| func(A, B); |
| float *pB = B.data_ptr<float>(); |
| at::Tensor B2 = torch::sum(A, {0}); |
| float *pB2 = B2.data_ptr<float>(); |
| int size = A.numel(); |
| float size_sqrt = std::sqrt(size); |
| float natural_noise = size_sqrt * 1e-7; |
| if (!torch::allclose(B, B2, natural_noise)) { |
| std::ostringstream oss; |
| oss << func_name << " failed check: " << std::endl; |
| oss << "value: " << B << std::endl;; |
| oss << "reference: " << B2 << std::endl; |
| oss << "threshold: " << natural_noise << std::endl; |
| throw std::runtime_error(oss.str()); |
| } |
| } |
| |
| static void reduce1d_naive(at::Tensor& A, at::Tensor& B) { |
| float *pA = A.data_ptr<float>(); |
| float *pB = B.data_ptr<float>(); |
| int size = A.numel(); |
| TORCH_CHECK(B.numel() == 1); |
| *pB = 0.; |
| for (int i = 0; i < size; i++) { |
| *pB += pA[i]; |
| } |
| } |
| |
| BENCHMARK_DEFINE_F(Reduce1D, Naive)(benchmark::State& state) { |
| VALIDATE(reduce1d_naive, A, B); |
| for (auto _ : state) { |
| reduce1d_naive(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, Naive)->Args({1 << 24}); |
| |
| static void reduce1d_native_rfactor(at::Tensor& A, at::Tensor& B) { |
| float *pA = A.data_ptr<float>(); |
| float *pB = B.data_ptr<float>(); |
| int size = A.numel(); |
| constexpr int kChunkSize = 16; |
| TORCH_CHECK(B.numel() == 1); |
| TORCH_CHECK(size % kChunkSize == 0); |
| *pB = 0.; |
| float temp[kChunkSize]; |
| for (int j = 0; j < kChunkSize; j++) { |
| temp[j] = 0; |
| } |
| |
| int chunk_count = size / kChunkSize; |
| for (int i = 0; i < chunk_count; i++) { |
| for (int j = 0; j < kChunkSize; j++) { |
| temp[j] += pA[i * kChunkSize + j]; |
| } |
| } |
| |
| for (int j = 0; j < kChunkSize; j++) { |
| *pB += temp[j]; |
| } |
| } |
| |
| BENCHMARK_DEFINE_F(Reduce1D, NativeRfactor)(benchmark::State& state) { |
| VALIDATE(reduce1d_native_rfactor, A, B); |
| for (auto _ : state) { |
| reduce1d_native_rfactor(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, NativeRfactor)->Args({1 << 24}); |
| |
| #ifdef USE_AVX2 |
| |
| // x = ( x7, x6, x5, x4, x3, x2, x1, x0 ) |
| inline float sum_f32x8(__m256 x) { |
| // hiQuad = ( x7, x6, x5, x4 ) |
| const __m128 hiQuad = _mm256_extractf128_ps(x, 1); |
| // loQuad = ( x3, x2, x1, x0 ) |
| const __m128 loQuad = _mm256_castps256_ps128(x); |
| // sumQuad = ( x3 + x7, x2 + x6, x1 + x5, x0 + x4 ) |
| const __m128 sumQuad = _mm_add_ps(loQuad, hiQuad); |
| // loDual = ( -, -, x1 + x5, x0 + x4 ) |
| const __m128 loDual = sumQuad; |
| // hiDual = ( -, -, x3 + x7, x2 + x6 ) |
| const __m128 hiDual = _mm_movehl_ps(sumQuad, sumQuad); |
| // sumDual = ( -, -, x1 + x3 + x5 + x7, x0 + x2 + x4 + x6 ) |
| const __m128 sumDual = _mm_add_ps(loDual, hiDual); |
| // lo = ( -, -, -, x0 + x2 + x4 + x6 ) |
| const __m128 lo = sumDual; |
| // hi = ( -, -, -, x1 + x3 + x5 + x7 ) |
| const __m128 hi = _mm_shuffle_ps(sumDual, sumDual, 0x1); |
| // sum = ( -, -, -, x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 ) |
| const __m128 sum = _mm_add_ss(lo, hi); |
| return _mm_cvtss_f32(sum); |
| } |
| |
| static void reduce1d_native_vector(at::Tensor& A, at::Tensor& B) { |
| float *pA = A.data_ptr<float>(); |
| float *pB = B.data_ptr<float>(); |
| int size = A.numel(); |
| constexpr int kChunkSize = sizeof(__m256) / sizeof(float); |
| TORCH_CHECK(B.numel() == 1); |
| TORCH_CHECK(size % kChunkSize == 0); |
| *pB = 0.; |
| __m256 temp; |
| temp = _mm256_setzero_ps(); |
| |
| int tile_count = size / kChunkSize; |
| for (int i = 0; i < tile_count; i++) { |
| __m256 data = _mm256_load_ps(pA + i * kChunkSize); |
| temp = _mm256_add_ps(temp, data); |
| } |
| |
| float result = sum_f32x8(temp); |
| *pB = result; |
| } |
| |
| BENCHMARK_DEFINE_F(Reduce1D, NativeVector)(benchmark::State& state) { |
| VALIDATE(reduce1d_native_vector, A, B); |
| for (auto _ : state) { |
| reduce1d_native_vector(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, NativeVector)->Args({1 << 24}); |
| |
| static void reduce1d_native_tiled(at::Tensor& A, at::Tensor& B) { |
| static constexpr int kTileSize = 4; |
| float *pA = A.data_ptr<float>(); |
| float *pB = B.data_ptr<float>(); |
| int size = A.numel(); |
| constexpr int kChunkSize = sizeof(__m256) / sizeof(float); |
| TORCH_CHECK(B.numel() == 1, "Invalid size: ", B.numel(), " != 1"); |
| TORCH_CHECK(size % kChunkSize == 0, "Invalid size: ", size, " % ", kChunkSize , " ! = 0"); |
| __m256 t[kTileSize]; |
| for (int j = 0; j < kTileSize; j++) { |
| t[j] = _mm256_setzero_ps(); |
| } |
| |
| int tile_count = size / kChunkSize / kTileSize; |
| for (int i = 0; i < tile_count; i++) { |
| #pragma unroll |
| for (int j = 0; j < kTileSize; j++) { |
| float *p = pA + (i * kTileSize + j) * kChunkSize; |
| __m256 data = _mm256_loadu_ps(p); |
| t[j] = _mm256_add_ps(t[j], data); |
| } |
| } |
| |
| float result = sum_f32x8(t[0]); |
| for (int j = 1; j < kTileSize; j++) { |
| result += sum_f32x8(t[j]); |
| } |
| *pB = result; |
| } |
| |
| BENCHMARK_DEFINE_F(Reduce1D, NativeTiled)(benchmark::State& state) { |
| VALIDATE(reduce1d_native_tiled, A, B); |
| for (auto _ : state) { |
| reduce1d_native_tiled(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, NativeTiled)->Args({1 << 24}); |
| |
| #endif // USE_AVX2 |
| |
| BENCHMARK_DEFINE_F(Reduce1D, TeNaive)(benchmark::State& state) { |
| te::KernelScope ks; |
| |
| int M = A.numel(); |
| |
| te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat)); |
| te::Tensor* BT = te::Reduce( |
| "reduce_full", |
| {{1, "N"}}, |
| te::Sum(), |
| [&](const te::ExprHandle& n, const te::ExprHandle& m) { |
| return AP.load(m); |
| }, |
| {{M, "M"}}); |
| |
| te::LoopNest loop({BT}); |
| loop.prepareForCodegen(); |
| te::Stmt* s = loop.root_stmt(); |
| s = te::IRSimplifier::simplify(s); |
| auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT}); |
| |
| auto func = [&](at::Tensor& A, at::Tensor& B) { |
| cg->call({A.data_ptr<float>(), B.data_ptr<float>()}); |
| }; |
| |
| ValidateFunc(func, "reduce1d_te_naive", A, B); |
| for (auto _ : state) { |
| func(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, TeNaive)->Args({1 << 24}); |
| |
| BENCHMARK_DEFINE_F(Reduce1D, TeSplitTail)(benchmark::State& state) { |
| te::KernelScope ks; |
| |
| int M = A.numel(); |
| |
| te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat)); |
| te::Tensor* BT = te::Reduce( |
| "reduce_full", |
| {{1, "N"}}, |
| te::Sum(), |
| [&](const te::ExprHandle& n, const te::ExprHandle& m) { |
| return AP.load(m); |
| }, |
| {{M, "M"}}); |
| |
| te::LoopNest loop({BT}); |
| const int kChunkSize = 8; |
| |
| { |
| auto const& loops = loop.getLoopStmtsFor(BT); |
| te::For* m = loops[1]; |
| te::For* mo; |
| te::For* mi; |
| te::For* tail; |
| loop.splitWithTail(m, kChunkSize, &mo, &mi, &tail); |
| } |
| |
| loop.prepareForCodegen(); |
| te::Stmt* s = loop.root_stmt(); |
| s = te::IRSimplifier::simplify(s); |
| auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT}); |
| |
| auto func = [&](at::Tensor& A, at::Tensor& B) { |
| cg->call({A.data_ptr<float>(), B.data_ptr<float>()}); |
| }; |
| |
| ValidateFunc(func, "reduce1d_te_naive", A, B); |
| for (auto _ : state) { |
| func(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, TeSplitTail)->Args({1 << 24}); |
| |
| BENCHMARK_DEFINE_F(Reduce1D, TeSplitMask)(benchmark::State& state) { |
| te::KernelScope ks; |
| |
| int M = A.numel(); |
| |
| te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat)); |
| te::Tensor* BT = te::Reduce( |
| "reduce_full", |
| {{1, "N"}}, |
| te::Sum(), |
| [&](const te::ExprHandle& n, const te::ExprHandle& m) { |
| return AP.load(m); |
| }, |
| {{M, "M"}}); |
| |
| te::LoopNest loop({BT}); |
| const int kChunkSize = 8; |
| |
| { |
| auto const& loops = loop.getLoopStmtsFor(BT); |
| te::For* m = loops[1]; |
| te::For* mo; |
| te::For* mi; |
| loop.splitWithMask(m, kChunkSize, &mo, &mi); |
| } |
| |
| loop.prepareForCodegen(); |
| te::Stmt* s = loop.root_stmt(); |
| s = te::IRSimplifier::simplify(s); |
| auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT}); |
| |
| auto func = [&](at::Tensor& A, at::Tensor& B) { |
| cg->call({A.data_ptr<float>(), B.data_ptr<float>()}); |
| }; |
| |
| ValidateFunc(func, "reduce1d_te_naive", A, B); |
| for (auto _ : state) { |
| func(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, TeSplitMask)->Args({1 << 24}); |
| |
| BENCHMARK_DEFINE_F(Reduce1D, TeRfactorV1)(benchmark::State& state) { |
| te::KernelScope ks; |
| |
| int M = A.numel(); |
| const int kChunkSize = 8; |
| TORCH_CHECK(M % kChunkSize == 0); |
| |
| te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat)); |
| te::Tensor* BT = te::Reduce( |
| "reduce_full", |
| {}, |
| te::Sum(), |
| [&](const te::ExprHandle& m) { |
| return AP.load(m); |
| }, |
| {{M, "M"}}); |
| |
| te::LoopNest loop({BT}); |
| |
| { |
| auto const& loops = loop.getLoopStmtsFor(BT); |
| TORCH_CHECK(loops.size() == 1); |
| te::For* m = loops[0]; |
| te::For* mo; |
| te::For* mi; |
| loop.splitWithMask(m, kChunkSize, &mo, &mi); |
| } |
| |
| { |
| auto const& loops = loop.getLoopStmtsFor(BT); |
| TORCH_CHECK(loops.size() == 2); |
| te::For* mo = loops[0]; |
| te::For* mi = loops[1]; |
| // TODO: rfactor works on the untransformed var set. This is a problem since we need to |
| // look for the loop after Split to rfactor. |
| auto bt_body = te::NodeFinder<te::ReduceOp>::find(loop.root_stmt())[0]; |
| loop.rfactor(bt_body, mi->var()); |
| } |
| |
| loop.prepareForCodegen(); |
| te::Stmt* s = loop.root_stmt(); |
| s = te::IRSimplifier::simplify(s); |
| auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT}); |
| |
| auto func = [&](at::Tensor& A, at::Tensor& B) { |
| cg->call({A.data_ptr<float>(), B.data_ptr<float>()}); |
| }; |
| |
| ValidateFunc(func, "reduce1d_te_naive", A, B); |
| for (auto _ : state) { |
| func(A, B); |
| } |
| } |
| |
| // TODO: add this back when the problem is fixed |
| // BENCHMARK_REGISTER_F(Reduce1D, TeRfactorV1)->Args({1 << 24}); |
| |
| // Similar to TeRfactor itself. But manually constructed the Split expression. |
| BENCHMARK_DEFINE_F(Reduce1D, TeRfactorV2)(benchmark::State& state) { |
| te::KernelScope ks; |
| |
| int M = A.numel(); |
| const int kChunkSize = 8; |
| TORCH_CHECK(M % kChunkSize == 0); |
| |
| te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat)); |
| te::Tensor* BT = te::Reduce( |
| "reduce_full", |
| {}, |
| te::Sum(), |
| [&](const te::ExprHandle& mo, const te::ExprHandle& mi) { |
| return AP.load(mo * kChunkSize + mi); |
| }, |
| {{M / kChunkSize, "mo"}, {kChunkSize, "mi"}}); |
| |
| te::LoopNest loop({BT}); |
| |
| { |
| auto const& loops = loop.getLoopStmtsFor(BT); |
| TORCH_CHECK(loops.size() == 2); |
| te::For* mo = loops[0]; |
| te::For* mi = loops[1]; |
| auto bt_body = te::NodeFinder<te::ReduceOp>::find(loop.root_stmt())[0]; |
| loop.rfactor(bt_body, mi->var()); |
| } |
| |
| { |
| // Look for the new For and vectorize, but rfactor didn't return the newly added "For *". |
| // Resort to a hack to find the lost "For *". |
| // TODO: make it easier to find the transformed loop after rfactor. |
| auto loops = te::NodeFinder<te::For>::find(loop.root_stmt()); |
| TORCH_CHECK(loops.size() == 4); |
| auto mi = loops[2]; |
| loop.vectorize(mi); |
| } |
| |
| loop.prepareForCodegen(); |
| te::Stmt* s = loop.root_stmt(); |
| s = te::IRSimplifier::simplify(s); |
| auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT}); |
| |
| auto func = [&](at::Tensor& A, at::Tensor& B) { |
| cg->call({A.data_ptr<float>(), B.data_ptr<float>()}); |
| }; |
| |
| ValidateFunc(func, "reduce1d_te_naive", A, B); |
| for (auto _ : state) { |
| func(A, B); |
| } |
| } |
| |
| BENCHMARK_REGISTER_F(Reduce1D, TeRfactorV2)->Args({1 << 24}); |