blob: 06bc9b0551769b7bf1b84d7a45424d093b4a6ed6 [file] [log] [blame]
#include <benchmark/benchmark.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/torch.h>
#include <immintrin.h>
namespace te = torch::jit::tensorexpr;
namespace {
class Reduce1D : public benchmark::Fixture {
public:
void SetUp(const benchmark::State& state) override {
at::set_num_threads(1);
torch::manual_seed(0x12345678);
M = state.range(0);
A = torch::randn({M});
B = torch::zeros({});
}
void TearDown(benchmark::State& state) override {
state.counters["BYTES"] = benchmark::Counter(uint64_t(state.iterations()) * M * sizeof(float),
benchmark::Counter::kIsRate);
}
int M;
at::Tensor A;
at::Tensor B;
};
} // namespace
BENCHMARK_DEFINE_F(Reduce1D, Torch)(benchmark::State& state) {
for (auto _ : state) {
B = torch::sum(A, {0});
}
}
BENCHMARK_REGISTER_F(Reduce1D, Torch)->Args({1 << 24});
#define VALIDATE(F, A, B) ValidateFunc((F), #F, (A), (B))
template <typename Func>
void ValidateFunc(Func func, const std::string& func_name, at::Tensor& A, at::Tensor& B) {
func(A, B);
float *pB = B.data_ptr<float>();
at::Tensor B2 = torch::sum(A, {0});
float *pB2 = B2.data_ptr<float>();
int size = A.numel();
float size_sqrt = std::sqrt(size);
float natural_noise = size_sqrt * 1e-7;
if (!torch::allclose(B, B2, natural_noise)) {
std::ostringstream oss;
oss << func_name << " failed check: " << std::endl;
oss << "value: " << B << std::endl;;
oss << "reference: " << B2 << std::endl;
oss << "threshold: " << natural_noise << std::endl;
throw std::runtime_error(oss.str());
}
}
static void reduce1d_naive(at::Tensor& A, at::Tensor& B) {
float *pA = A.data_ptr<float>();
float *pB = B.data_ptr<float>();
int size = A.numel();
TORCH_CHECK(B.numel() == 1);
*pB = 0.;
for (int i = 0; i < size; i++) {
*pB += pA[i];
}
}
BENCHMARK_DEFINE_F(Reduce1D, Naive)(benchmark::State& state) {
VALIDATE(reduce1d_naive, A, B);
for (auto _ : state) {
reduce1d_naive(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, Naive)->Args({1 << 24});
static void reduce1d_native_rfactor(at::Tensor& A, at::Tensor& B) {
float *pA = A.data_ptr<float>();
float *pB = B.data_ptr<float>();
int size = A.numel();
constexpr int kChunkSize = 16;
TORCH_CHECK(B.numel() == 1);
TORCH_CHECK(size % kChunkSize == 0);
*pB = 0.;
float temp[kChunkSize];
for (int j = 0; j < kChunkSize; j++) {
temp[j] = 0;
}
int chunk_count = size / kChunkSize;
for (int i = 0; i < chunk_count; i++) {
for (int j = 0; j < kChunkSize; j++) {
temp[j] += pA[i * kChunkSize + j];
}
}
for (int j = 0; j < kChunkSize; j++) {
*pB += temp[j];
}
}
BENCHMARK_DEFINE_F(Reduce1D, NativeRfactor)(benchmark::State& state) {
VALIDATE(reduce1d_native_rfactor, A, B);
for (auto _ : state) {
reduce1d_native_rfactor(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, NativeRfactor)->Args({1 << 24});
#ifdef USE_AVX2
// x = ( x7, x6, x5, x4, x3, x2, x1, x0 )
inline float sum_f32x8(__m256 x) {
// hiQuad = ( x7, x6, x5, x4 )
const __m128 hiQuad = _mm256_extractf128_ps(x, 1);
// loQuad = ( x3, x2, x1, x0 )
const __m128 loQuad = _mm256_castps256_ps128(x);
// sumQuad = ( x3 + x7, x2 + x6, x1 + x5, x0 + x4 )
const __m128 sumQuad = _mm_add_ps(loQuad, hiQuad);
// loDual = ( -, -, x1 + x5, x0 + x4 )
const __m128 loDual = sumQuad;
// hiDual = ( -, -, x3 + x7, x2 + x6 )
const __m128 hiDual = _mm_movehl_ps(sumQuad, sumQuad);
// sumDual = ( -, -, x1 + x3 + x5 + x7, x0 + x2 + x4 + x6 )
const __m128 sumDual = _mm_add_ps(loDual, hiDual);
// lo = ( -, -, -, x0 + x2 + x4 + x6 )
const __m128 lo = sumDual;
// hi = ( -, -, -, x1 + x3 + x5 + x7 )
const __m128 hi = _mm_shuffle_ps(sumDual, sumDual, 0x1);
// sum = ( -, -, -, x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 )
const __m128 sum = _mm_add_ss(lo, hi);
return _mm_cvtss_f32(sum);
}
static void reduce1d_native_vector(at::Tensor& A, at::Tensor& B) {
float *pA = A.data_ptr<float>();
float *pB = B.data_ptr<float>();
int size = A.numel();
constexpr int kChunkSize = sizeof(__m256) / sizeof(float);
TORCH_CHECK(B.numel() == 1);
TORCH_CHECK(size % kChunkSize == 0);
*pB = 0.;
__m256 temp;
temp = _mm256_setzero_ps();
int tile_count = size / kChunkSize;
for (int i = 0; i < tile_count; i++) {
__m256 data = _mm256_load_ps(pA + i * kChunkSize);
temp = _mm256_add_ps(temp, data);
}
float result = sum_f32x8(temp);
*pB = result;
}
BENCHMARK_DEFINE_F(Reduce1D, NativeVector)(benchmark::State& state) {
VALIDATE(reduce1d_native_vector, A, B);
for (auto _ : state) {
reduce1d_native_vector(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, NativeVector)->Args({1 << 24});
static void reduce1d_native_tiled(at::Tensor& A, at::Tensor& B) {
static constexpr int kTileSize = 4;
float *pA = A.data_ptr<float>();
float *pB = B.data_ptr<float>();
int size = A.numel();
constexpr int kChunkSize = sizeof(__m256) / sizeof(float);
TORCH_CHECK(B.numel() == 1, "Invalid size: ", B.numel(), " != 1");
TORCH_CHECK(size % kChunkSize == 0, "Invalid size: ", size, " % ", kChunkSize , " ! = 0");
__m256 t[kTileSize];
for (int j = 0; j < kTileSize; j++) {
t[j] = _mm256_setzero_ps();
}
int tile_count = size / kChunkSize / kTileSize;
for (int i = 0; i < tile_count; i++) {
#pragma unroll
for (int j = 0; j < kTileSize; j++) {
float *p = pA + (i * kTileSize + j) * kChunkSize;
__m256 data = _mm256_loadu_ps(p);
t[j] = _mm256_add_ps(t[j], data);
}
}
float result = sum_f32x8(t[0]);
for (int j = 1; j < kTileSize; j++) {
result += sum_f32x8(t[j]);
}
*pB = result;
}
BENCHMARK_DEFINE_F(Reduce1D, NativeTiled)(benchmark::State& state) {
VALIDATE(reduce1d_native_tiled, A, B);
for (auto _ : state) {
reduce1d_native_tiled(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, NativeTiled)->Args({1 << 24});
#endif // USE_AVX2
BENCHMARK_DEFINE_F(Reduce1D, TeNaive)(benchmark::State& state) {
te::KernelScope ks;
int M = A.numel();
te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat));
te::Tensor* BT = te::Reduce(
"reduce_full",
{{1, "N"}},
te::Sum(),
[&](const te::ExprHandle& n, const te::ExprHandle& m) {
return AP.load(m);
},
{{M, "M"}});
te::LoopNest loop({BT});
loop.prepareForCodegen();
te::Stmt* s = loop.root_stmt();
s = te::IRSimplifier::simplify(s);
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
auto func = [&](at::Tensor& A, at::Tensor& B) {
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
};
ValidateFunc(func, "reduce1d_te_naive", A, B);
for (auto _ : state) {
func(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, TeNaive)->Args({1 << 24});
BENCHMARK_DEFINE_F(Reduce1D, TeSplitTail)(benchmark::State& state) {
te::KernelScope ks;
int M = A.numel();
te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat));
te::Tensor* BT = te::Reduce(
"reduce_full",
{{1, "N"}},
te::Sum(),
[&](const te::ExprHandle& n, const te::ExprHandle& m) {
return AP.load(m);
},
{{M, "M"}});
te::LoopNest loop({BT});
const int kChunkSize = 8;
{
auto const& loops = loop.getLoopStmtsFor(BT);
te::For* m = loops[1];
te::For* mo;
te::For* mi;
te::For* tail;
loop.splitWithTail(m, kChunkSize, &mo, &mi, &tail);
}
loop.prepareForCodegen();
te::Stmt* s = loop.root_stmt();
s = te::IRSimplifier::simplify(s);
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
auto func = [&](at::Tensor& A, at::Tensor& B) {
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
};
ValidateFunc(func, "reduce1d_te_naive", A, B);
for (auto _ : state) {
func(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, TeSplitTail)->Args({1 << 24});
BENCHMARK_DEFINE_F(Reduce1D, TeSplitMask)(benchmark::State& state) {
te::KernelScope ks;
int M = A.numel();
te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat));
te::Tensor* BT = te::Reduce(
"reduce_full",
{{1, "N"}},
te::Sum(),
[&](const te::ExprHandle& n, const te::ExprHandle& m) {
return AP.load(m);
},
{{M, "M"}});
te::LoopNest loop({BT});
const int kChunkSize = 8;
{
auto const& loops = loop.getLoopStmtsFor(BT);
te::For* m = loops[1];
te::For* mo;
te::For* mi;
loop.splitWithMask(m, kChunkSize, &mo, &mi);
}
loop.prepareForCodegen();
te::Stmt* s = loop.root_stmt();
s = te::IRSimplifier::simplify(s);
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
auto func = [&](at::Tensor& A, at::Tensor& B) {
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
};
ValidateFunc(func, "reduce1d_te_naive", A, B);
for (auto _ : state) {
func(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, TeSplitMask)->Args({1 << 24});
BENCHMARK_DEFINE_F(Reduce1D, TeRfactorV1)(benchmark::State& state) {
te::KernelScope ks;
int M = A.numel();
const int kChunkSize = 8;
TORCH_CHECK(M % kChunkSize == 0);
te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat));
te::Tensor* BT = te::Reduce(
"reduce_full",
{},
te::Sum(),
[&](const te::ExprHandle& m) {
return AP.load(m);
},
{{M, "M"}});
te::LoopNest loop({BT});
{
auto const& loops = loop.getLoopStmtsFor(BT);
TORCH_CHECK(loops.size() == 1);
te::For* m = loops[0];
te::For* mo;
te::For* mi;
loop.splitWithMask(m, kChunkSize, &mo, &mi);
}
{
auto const& loops = loop.getLoopStmtsFor(BT);
TORCH_CHECK(loops.size() == 2);
te::For* mo = loops[0];
te::For* mi = loops[1];
// TODO: rfactor works on the untransformed var set. This is a problem since we need to
// look for the loop after Split to rfactor.
auto bt_body = te::NodeFinder<te::ReduceOp>::find(loop.root_stmt())[0];
loop.rfactor(bt_body, mi->var());
}
loop.prepareForCodegen();
te::Stmt* s = loop.root_stmt();
s = te::IRSimplifier::simplify(s);
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
auto func = [&](at::Tensor& A, at::Tensor& B) {
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
};
ValidateFunc(func, "reduce1d_te_naive", A, B);
for (auto _ : state) {
func(A, B);
}
}
// TODO: add this back when the problem is fixed
// BENCHMARK_REGISTER_F(Reduce1D, TeRfactorV1)->Args({1 << 24});
// Similar to TeRfactor itself. But manually constructed the Split expression.
BENCHMARK_DEFINE_F(Reduce1D, TeRfactorV2)(benchmark::State& state) {
te::KernelScope ks;
int M = A.numel();
const int kChunkSize = 8;
TORCH_CHECK(M % kChunkSize == 0);
te::Placeholder AP(te::BufHandle("A", {M}, te::kFloat));
te::Tensor* BT = te::Reduce(
"reduce_full",
{},
te::Sum(),
[&](const te::ExprHandle& mo, const te::ExprHandle& mi) {
return AP.load(mo * kChunkSize + mi);
},
{{M / kChunkSize, "mo"}, {kChunkSize, "mi"}});
te::LoopNest loop({BT});
{
auto const& loops = loop.getLoopStmtsFor(BT);
TORCH_CHECK(loops.size() == 2);
te::For* mo = loops[0];
te::For* mi = loops[1];
auto bt_body = te::NodeFinder<te::ReduceOp>::find(loop.root_stmt())[0];
loop.rfactor(bt_body, mi->var());
}
{
// Look for the new For and vectorize, but rfactor didn't return the newly added "For *".
// Resort to a hack to find the lost "For *".
// TODO: make it easier to find the transformed loop after rfactor.
auto loops = te::NodeFinder<te::For>::find(loop.root_stmt());
TORCH_CHECK(loops.size() == 4);
auto mi = loops[2];
loop.vectorize(mi);
}
loop.prepareForCodegen();
te::Stmt* s = loop.root_stmt();
s = te::IRSimplifier::simplify(s);
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
auto func = [&](at::Tensor& A, at::Tensor& B) {
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
};
ValidateFunc(func, "reduce1d_te_naive", A, B);
for (auto _ : state) {
func(A, B);
}
}
BENCHMARK_REGISTER_F(Reduce1D, TeRfactorV2)->Args({1 << 24});