|  | #include "batch_bucketize_op.h" | 
|  |  | 
|  | #include "caffe2/core/context.h" | 
|  | #include "caffe2/core/tensor.h" | 
|  |  | 
|  | namespace caffe2 { | 
|  |  | 
|  | template <> | 
|  | bool BatchBucketizeOp<CPUContext>::RunOnDevice() { | 
|  | auto& feature = Input(FEATURE); | 
|  | auto& indices = Input(INDICES); | 
|  | auto& boundaries = Input(BOUNDARIES); | 
|  | auto& lengths = Input(LENGTHS); | 
|  |  | 
|  | CAFFE_ENFORCE_EQ(lengths.dim(), 1); | 
|  | CAFFE_ENFORCE_EQ(indices.dim(), 1); | 
|  | CAFFE_ENFORCE_EQ(boundaries.dim(), 1); | 
|  | CAFFE_ENFORCE_EQ(feature.dim(), 2); | 
|  | CAFFE_ENFORCE_EQ(lengths.numel(), indices.numel()); | 
|  |  | 
|  | const auto* lengths_data = lengths.template data<int32_t>(); | 
|  | const auto* indices_data = indices.template data<int32_t>(); | 
|  | const auto* boundaries_data = boundaries.template data<float>(); | 
|  | const auto* feature_data = feature.template data<float>(); | 
|  | auto batch_size = feature.size(0); | 
|  | auto feature_dim = feature.size(1); | 
|  | auto output_dim = indices.numel(); | 
|  |  | 
|  | int64_t length_sum = 0; | 
|  | for (int64_t i = 0; i < lengths.numel(); i++) { | 
|  | CAFFE_ENFORCE_GE(feature_dim, indices_data[i]); | 
|  | length_sum += lengths_data[i]; | 
|  | } | 
|  | CAFFE_ENFORCE_EQ(length_sum, boundaries.numel()); | 
|  |  | 
|  | int64_t lower_bound = 0; | 
|  | auto* output = Output(O, {batch_size, output_dim}, at::dtype<int32_t>()); | 
|  | auto* output_data = output->template mutable_data<int32_t>(); | 
|  |  | 
|  | for (int64_t i = 0; i < batch_size; i++) { | 
|  | lower_bound = 0; | 
|  | for (int64_t j = 0; j < output_dim; j++) { | 
|  | for (int64_t k = 0; k <= lengths_data[j]; k++) { | 
|  | if (k == lengths_data[j] || | 
|  | feature_data[i * feature_dim + indices_data[j]] <= | 
|  | boundaries_data[lower_bound + k]) { | 
|  | output_data[i * output_dim + j] = k; | 
|  | break; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | lower_bound += lengths_data[j]; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | REGISTER_CPU_OPERATOR(BatchBucketize, BatchBucketizeOp<CPUContext>); | 
|  |  | 
|  | OPERATOR_SCHEMA(BatchBucketize) | 
|  | .NumInputs(4) | 
|  | .NumOutputs(1) | 
|  | .SetDoc(R"DOC( | 
|  | Bucketize the float_features into sparse features. | 
|  | The float_features is a N * D tensor where N is the batch_size, and D is the feature_dim. | 
|  | The indices is a 1D tensor containing the indices of the features that need to be bucketized. | 
|  | The lengths is a 1D tensor that splits the following 'boundaries' argument. | 
|  | The boundaries is a 1D tensor containing the border list for each feature. | 
|  |  | 
|  | With in each batch, `indices` should not have duplicate number, | 
|  | and the number of elements in `indices` should be less than or equal to `D`. | 
|  | Each element in `lengths` vector (lengths[`i`]) represents | 
|  | the number of boundaries in the sub border list. | 
|  | The sum of all elements in `lengths` must be equal to the size of  `boundaries`. | 
|  | If lengths[0] = 2, the first sub border list is [0.5, 1.0], which separate the | 
|  | value to (-inf, 0.5], (0,5, 1.0], (1.0, inf). The bucketized feature will have | 
|  | three possible values (i.e. 0, 1, 2). | 
|  |  | 
|  |  | 
|  | For example, with input: | 
|  |  | 
|  | float_features = [[1.42, 2.07, 3.19, 0.55, 4.32], | 
|  | [4.57, 2.30, 0.84, 4.48, 3.09], | 
|  | [0.89, 0.26, 2.41, 0.47, 1.05], | 
|  | [0.03, 2.97, 2.43, 4.36, 3.11], | 
|  | [2.74, 5.77, 0.90, 2.63, 0.38]] | 
|  | indices = [0, 1, 4] | 
|  | lengths = [2, 3, 1] | 
|  | boundaries =  [0.5, 1.0, 1.5, 2.5, 3.5, 2.5] | 
|  |  | 
|  | The output is: | 
|  |  | 
|  | output =[[2, 1, 1], | 
|  | [2, 1, 1], | 
|  | [1, 0, 0], | 
|  | [0, 2, 1], | 
|  | [2, 3, 0]] | 
|  |  | 
|  | after running this operator. | 
|  | )DOC") | 
|  | .Input( | 
|  | 0, | 
|  | "float_features", | 
|  | "2-D dense tensor, the second dimension must be greater or equal to the indices dimension") | 
|  | .Input( | 
|  | 1, | 
|  | "indices", | 
|  | "Flatten tensor, containing the indices of `float_features` to be bucketized. The datatype must be int32.") | 
|  | .Input( | 
|  | 2, | 
|  | "lengths", | 
|  | "Flatten tensor, the size must be equal to that of `indices`. The datatype must be int32.") | 
|  | .Input( | 
|  | 3, | 
|  | "boundaries", | 
|  | "Flatten tensor, dimension has to match the sum of lengths") | 
|  | .Output( | 
|  | 0, | 
|  | "bucktized_feat", | 
|  | "2-D dense tensor, with 1st dim = float_features.dim(0), 2nd dim = size(indices)" | 
|  | "in the arg list, the tensor is of the same data type as `feature`."); | 
|  |  | 
|  | NO_GRADIENT(BatchBucketize); | 
|  |  | 
|  | } // namespace caffe2 |