blob: 257760ea195c031ee56ee8ac164b4bd84b5f9900 [file] [log] [blame]
import torch
NUM_REPEATS = 1000
NUM_REPEAT_OF_REPEATS = 1000
class SubTensor(torch.Tensor):
pass
class WithTorchFunction:
def __init__(self, data, requires_grad=False):
if isinstance(data, torch.Tensor):
self._tensor = data
return
self._tensor = torch.tensor(data, requires_grad=requires_grad)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return WithTorchFunction(args[0]._tensor + args[1]._tensor)
class SubWithTorchFunction(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)