blob: 649212e9995c3de218c3c411f9a4eed9cdd90db7 [file] [log] [blame]
#include "caffe2/operators/transpose_op.h"
namespace caffe2 {
#define COMPILE_TIME_MAX_TRANSPOSE_DIMS 10
template <>
template <typename T>
bool TransposeOp<CPUContext>::DoRunWithType() {
int from_inds[COMPILE_TIME_MAX_TRANSPOSE_DIMS] = {0};
const auto& input = Input(0);
auto* output = Output(0);
size_t count = input.size();
const auto& from_counts = input.dims();
const auto& to_counts = output->dims();
int num_axes = from_counts.size();
const T* from_data = input.template data<T>();
T* to_data = output->template mutable_data<T>();
for (size_t index = 0; index < count; index++) {
size_t from_index = index, to_index = 0;
for (int i = num_axes - 1; i >= 0; --i) {
from_inds[i] = from_index % from_counts[i];
from_index = from_index / from_counts[i];
}
for (int i = 0; i < num_axes - 1; ++i) {
to_index = (to_index + from_inds[axes_[i]]) * to_counts[i + 1];
}
to_index += from_inds[axes_[num_axes - 1]];
*(to_data + to_index) = *(from_data + index);
}
return true;
}
namespace {
REGISTER_CPU_OPERATOR(Transpose, TransposeOp<CPUContext>);
OPERATOR_SCHEMA(Transpose)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](
const OperatorDef& def,
const vector<TensorShape>& in) {
ArgumentHelper helper(def);
vector<int> axes = helper.GetRepeatedArgument<int>("axes");
vector<TensorShape> out(1);
out[0].set_data_type(in[0].data_type());
if (axes.empty()) {
for (auto axis = in [0].dims().rbegin(); axis != in[0].dims().rend();
++axis) {
out[0].add_dims(*axis);
}
} else {
auto tensor_size = in[0].dims().size();
auto valid_axes =
std::all_of(axes.begin(), axes.end(), [&tensor_size](int& axis) {
return axis >= 0 && axis < tensor_size;
});
CAFFE_ENFORCE(valid_axes, "Axes argument passed in had invalid values");
CAFFE_ENFORCE(
axes.size() == tensor_size,
"Axes argument passed in had the incorrect size");
for (auto axis = axes.begin(); axis != axes.end(); ++axis) {
out[0].add_dims(in[0].dims().Get(*axis));
}
}
return out;
})
.SetDoc(R"DOC(
Transpose the input tensor similar to numpy.transpose. For example, when
axes=(1, 0, 2), given an input tensor of shape (1, 2, 3), the output shape
will be (2, 1, 3).
)DOC")
.Arg(
"axes",
"A list of integers. By default, reverse the dimensions, "
"otherwise permute the axes according to the values given.")
.Input(0, "data", "An input tensor.")
.Output(0, "transposed", "Transposed output.");
class GetTransposeGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
// We will create our own arguments.
bool CopyArguments() const override {
return false;
}
vector<OperatorDef> GetGradientDefs() override {
auto ops = SingleGradientDef(
"Transpose", "", vector<string>{GO(0)}, vector<string>{GI(0)});
ops[0].mutable_arg()->CopyFrom(Def().arg());
if (HasArgument(Def(), "axes")) {
// If axes is specified, we will need to figure out the inverse index.
const Argument& old_axes = GetArgument(Def(), "axes");
const int axes_size = old_axes.ints_size();
Argument* new_arg = GetMutableArgument("axes", false, &ops[0]);
for (int i = 0; i < axes_size; ++i) {
new_arg->set_ints(old_axes.ints(i), i);
}
}
return ops;
}
};
REGISTER_GRADIENT(Transpose, GetTransposeGradient);
} // namespace
} // namespace caffe2