| from . import benchmark |
| |
| |
| class ReduceBench(benchmark.Benchmark): |
| def __init__(self, mode, device, case, M, N, K): |
| super().__init__(mode, device) |
| self.case = case |
| self.M = M |
| self.N = N |
| self.K = K |
| |
| self.data = self.rand( |
| [M, N, K], device=device, requires_grad=self.requires_grad |
| ) |
| if case == "row": |
| self.dims = [1, 2] |
| elif case == "mid": |
| self.dims = [0, 2] |
| elif case == "col": |
| self.dims = [0, 1] |
| else: |
| raise ValueError("invalid case: %s" % case) |
| |
| def forward(self): |
| y = self.sum(self.data, self.dims) |
| return y |
| |
| def config(self): |
| return [self.M, self.N, self.K] |
| |
| @staticmethod |
| def default_configs(): |
| return [ |
| # [512, 512, 512], |
| [512, 64, 512], |
| ] |
| |
| @staticmethod |
| def module(): |
| return "reduce" |
| |
| def memory_workload(self): |
| if self.mode == "fwd": |
| sol_count = 1 |
| algorithmic_count = 1 |
| else: |
| sol_count = (1) + (1) |
| algorithmic_count = 1 + 1 |
| |
| buffer_size = self.M * self.N * self.K * 4 |
| return { |
| "sol": buffer_size * sol_count, |
| "algorithmic": buffer_size * algorithmic_count, |
| } |
| |
| |
| class ReduceRowBench(ReduceBench): |
| def __init__(self, mode, device, M, N, K): |
| super(ReduceRowBench, self).__init__(mode, device, "row", M, N, K) |
| |
| @staticmethod |
| def module(): |
| return "reduce_row" |
| |
| |
| class ReduceMidBench(ReduceBench): |
| def __init__(self, mode, device, M, N, K): |
| super(ReduceMidBench, self).__init__(mode, device, "mid", M, N, K) |
| |
| @staticmethod |
| def module(): |
| return "reduce_mid" |
| |
| |
| class ReduceColBench(ReduceBench): |
| def __init__(self, mode, device, M, N, K): |
| super(ReduceColBench, self).__init__(mode, device, "col", M, N, K) |
| |
| @staticmethod |
| def module(): |
| return "reduce_col" |
| |
| |
| benchmark.register_benchmark_class(ReduceRowBench) |
| benchmark.register_benchmark_class(ReduceMidBench) |
| benchmark.register_benchmark_class(ReduceColBench) |