blob: d793a45caa3c0be1d5afad23c1808d03e734df1d [file] [log] [blame]
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <cuda_runtime.h>
#include <benchmarks/cpp/nvfuser/utils.h>
using namespace torch::jit::fuser::cuda;
//------------------------------------------------------------------------------
static void setupLayerNorm(Fusion* fusion, DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
FusionGuard fg(fusion);
const int kReductionAxis = 1;
const float kEps = 1e-5;
Double* eps_ptr = IrBuilder::create<Double>(kEps);
// setup fusion
auto input = makeContigTensor(2, dtype);
auto weight = makeContigTensor(1, dtype);
auto bias = makeContigTensor(1, dtype);
fusion->addInput(input);
fusion->addInput(weight);
fusion->addInput(bias);
if (dtype == DataType::Half) {
input = castOp(DataType::Float, input);
weight = castOp(DataType::Float, weight);
bias = castOp(DataType::Float, bias);
}
auto layer_norm_results = layer_norm(input, 1, weight, bias, eps_ptr);
auto output = layer_norm_results.output;
if (dtype != DataType::Float) {
output = castOp(dtype, output);
}
fusion->addOutput(output);
}
static void NvFuserScheduler_LayerNorm(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
std::vector<int64_t> input_shape{
benchmark_state.range(0), benchmark_state.range(1)};
const float kEps = 1e-5;
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor input = at::randn(input_shape, options);
at::Tensor weight = at::randn({input_shape[1]}, options);
at::Tensor bias = at::randn({input_shape[1]}, options);
std::vector<c10::IValue> aten_inputs({input, weight, bias});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
(2 * input.numel() + weight.numel() + bias.numel()) *
int64_t(dataTypeSize(dtype)));
}
//------------------------------------------------------------------------------
static void Baseline_LayerNorm(
benchmark::State& benchmark_state,
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
std::vector<int64_t> input_shape{
benchmark_state.range(0), benchmark_state.range(1)};
const size_t kReductionAxis = 1;
std::vector<int64_t> norm_shape;
for (auto idx = kReductionAxis; idx < input_shape.size(); ++idx) {
norm_shape.push_back(input_shape[idx]);
}
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor input = at::randn(input_shape, options);
at::Tensor weight = at::randn({input_shape[1]}, options);
at::Tensor bias = at::randn({input_shape[1]}, options);
clearL2Cache();
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
auto output = at::layer_norm(input, norm_shape, weight, bias);
benchmark_state.SetIterationTime(timer.elapsed() / 1000.0);
cudaDeviceSynchronize();
clearL2Cache();
cudaDeviceSynchronize();
}
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
(2 * input.numel() + weight.numel() + bias.numel()) *
int64_t(dataTypeSize(dtype)));
}
static void Baseline_LayerNorm_fp32(benchmark::State& benchmark_state) {
Baseline_LayerNorm(benchmark_state, DataType::Float);
}
static void Baseline_LayerNorm_fp16(benchmark::State& benchmark_state) {
Baseline_LayerNorm(benchmark_state, DataType::Half);
}
//------------------------------------------------------------------------------
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_LayerNorm_fp32,
setupLayerNorm,
NvFuserScheduler_LayerNorm,
DataType::Float);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{160, 320}, {2, 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_LayerNorm_fp16,
setupLayerNorm,
NvFuserScheduler_LayerNorm,
DataType::Half);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{160, 320}, {2, 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 64 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{32768, 64 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
BENCHMARK(Baseline_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{160, 320}, {2, 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_LayerNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{160, 320}, {2, 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 64 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{32768, 64 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_LayerNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();