blob: bc04db49d34ca2941cfb360d96141ed65c4b860c [file] [log] [blame]
# Owner(s): ["module: onnx"]
from test_pytorch_common import TestCase, run_tests
import torch
import torch.onnx
from torch.nn import Module
import onnx
import io
import itertools
from torch.onnx.symbolic_helper import _export_onnx_opset_version
from torch.onnx import producer_name, producer_version
def check_onnx_opset_operator(model, ops, opset_version=_export_onnx_opset_version):
# check_onnx_components
assert (
model.producer_name == producer_name and
model.producer_version == producer_version and
model.opset_import[0].version == opset_version)
# check the schema with the onnx checker
onnx.checker.check_model(model)
# check target type and attributes
graph = model.graph
# ops should contain an object for each node
# in graph.node, in the right order.
# At least the op_name should be specified,
# but the op's attributes can optionally be
# specified as well
assert len(ops) == len(graph.node)
for i in range(0, len(ops)):
assert graph.node[i].op_type == ops[i]["op_name"]
if "attributes" in ops[i] :
attributes = ops[i]["attributes"]
assert len(attributes) == len(graph.node[i].attribute)
for j in range(0, len(attributes)):
for attribute_field in attributes[j].keys():
assert attributes[j][attribute_field] == getattr(graph.node[i].attribute[j], attribute_field)
def check_onnx_opsets_operator(module, x, ops, opset_versions, training=torch.onnx.TrainingMode.EVAL,
input_names=None, dynamic_axes=None):
for opset_version in opset_versions:
f = io.BytesIO()
torch.onnx.export(module, x, f,
opset_version=opset_version,
training=training,
input_names=input_names,
dynamic_axes=dynamic_axes)
model = onnx.load(io.BytesIO(f.getvalue()))
check_onnx_opset_operator(model, ops[opset_version], opset_version)
class TestONNXOpset(TestCase):
def test_opset_fallback(self):
class MyModule(Module):
def forward(self, x):
return torch.isnan(x)
ops = [{"op_name" : "IsNaN"}]
ops = {9 : ops, 10 : ops}
x = torch.tensor([1.0, float("nan"), 2.0])
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
def test_topk(self):
class MyModule(Module):
def forward(self, x):
return torch.topk(x, 3)
ops_9 = [{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2},
{"name": "k", "i": 3, "type": 2}]}]
ops_10 = [{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2}]}]
ops = {9: ops_9, 10: ops_10}
x = torch.arange(1., 6., requires_grad=True)
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
# test with dynamic k
class MyModuleDynamic(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, input, k):
return torch.topk(input, k)
ops_10 = [{"op_name": "Constant", "attributes": [{"name": "value", "type": 4}]},
{"op_name": "Reshape"},
{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2}]}]
ops = {10: ops_10}
x = torch.arange(1., 6., requires_grad=True)
k = torch.tensor(3)
module = MyModuleDynamic()
check_onnx_opsets_operator(module, [x, k], ops,
opset_versions=[10])
def test_maxpool(self):
module = torch.nn.MaxPool1d(2, stride=1)
ops_9 = [{"op_name" : "MaxPool",
"attributes" :
[{"name": "kernel_shape", "ints": [2], "type": 7},
{"name": "pads", "ints": [0, 0], "type": 7},
{"name": "strides", "ints": [1], "type": 7}]}]
ops_10 = [{"op_name" : "MaxPool",
"attributes" :
[{"name": "ceil_mode", "i": 0, "type": 2},
{"name": "kernel_shape", "ints": [2], "type": 7},
{"name": "pads", "ints": [0, 0], "type": 7},
{"name": "strides", "ints": [1], "type": 7}]}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(20, 16, 50)
check_onnx_opsets_operator(module, x, ops, opset_versions=[9, 10])
# add test with dilations
module = torch.nn.MaxPool1d(2, stride=1, dilation=2)
ops_10 = [{"op_name" : "MaxPool",
"attributes" :
[{"name": "ceil_mode", "i": 0, "type": 2},
{"name": "dilations", "ints": [2], "type": 7},
{"name": "kernel_shape", "ints": [2], "type": 7},
{"name": "pads", "ints": [0, 0], "type": 7},
{"name": "strides", "ints": [1], "type": 7}]}]
ops = {10 : ops_10}
x = torch.randn(20, 16, 50)
check_onnx_opsets_operator(module, x, ops, opset_versions=[10])
def test_upsample(self):
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
def forward(self, x):
size = [v * 2 for v in x.size()[2:]]
size = [int(i) for i in size]
return torch.nn.functional.interpolate(x, size=size, mode="nearest")
module = MyModule()
ops8 = [{"op_name" : "Upsample", "attributes" : [{"name": "mode", "s": ("nearest").encode(), "type": 3},
{"name": "scales", "floats": [1.0, 1.0, 2.0, 2.0], "type": 6}]}]
ops9 = [{"op_name" : "Constant"},
{"op_name" : "Upsample", "attributes" : [{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops = {8 : ops8, 9 : ops9}
x = torch.randn(2, 2, 2, 2)
check_onnx_opsets_operator(module, x, ops, opset_versions=[8, 9])
def test_cast_constant(self):
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
def forward(self, x):
return x - 1
module = MyModule()
ops_8 = [{"op_name" : "Constant"},
{"op_name" : "Cast", "attributes": [{"name": "to", "i": 7, "type": 2}]},
{"op_name" : "Sub"}]
ops_9 = [{"op_name" : "Constant"}, {"op_name" : "Sub"}]
ops = {8 : ops_8, 9 : ops_9}
x = torch.ones(5, 6, dtype=torch.long)
check_onnx_opsets_operator(module, x, ops, opset_versions=[8, 9])
def test_slice(self):
class MyModule(Module):
def forward(self, x):
return x[0:1]
ops_9 = [{"op_name" : "Slice",
"attributes" :
[{"name": "axes", "ints": [0], "type": 7},
{"name": "ends", "ints": [1], "type": 7},
{"name": "starts", "ints": [0], "type": 7}]}]
ops_10 = [{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice",
"attributes" : []}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(3)
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
class DynamicSliceModel(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x[1:x.size(0)]
module = DynamicSliceModel()
x = torch.rand(1, 2)
ops_10 = [{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather",
"attributes" : [{"name" : "axis", "i" : 0, "type" : 2}]},
{"op_name" : "Unsqueeze",
"attributes" : [{"name" : "axes", "i" : 0, "type" : 7}]},
{"op_name": "Constant"},
{"op_name" : "Slice",
"attributes" : []}]
ops = {10 : ops_10}
check_onnx_opsets_operator(module, x, ops, opset_versions=[10],
input_names=['x'], dynamic_axes={"x": [0, 1]})
ops_10 = [{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice",
"attributes" : []}]
ops = {10 : ops_10}
check_onnx_opsets_operator(module, x, ops, opset_versions=[10])
def test_flip(self):
class MyModule(Module):
def forward(self, x):
return torch.flip(x, dims=[0])
ops_10 = [{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice",
"attributes" : []}]
ops = {10 : ops_10}
import numpy
x = torch.tensor(numpy.arange(6.0).reshape(2, 3))
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[10])
def test_dropout(self):
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
self.dropout = torch.nn.Dropout(0.5)
def forward(self, x):
return self.dropout(x)
x = torch.randn(1, 2, 3)
# we should only export the onnx Dropout op in training mode; test both modes
# test training mode
ops = [{"op_name" : "Dropout", "attributes" : [{"name" : "ratio", "f" : 0.5, "type" : 1}]}]
ops = {9 : ops, 10 : ops}
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10], training=torch.onnx.TrainingMode.TRAINING)
# test eval mode
ops = [{"op_name" : "Identity"}]
ops = {9 : ops, 10 : ops}
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10], training=torch.onnx.TrainingMode.EVAL)
def test_full(self):
class MyModule(Module):
def forward(self, x):
return torch.full((3, 4), x)
ops = [{"op_name" : "Constant"},
{"op_name" : "ConstantOfShape"},
{"op_name" : "Add"}]
ops = {9 : ops, 10 : ops}
x = torch.tensor(12.)
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
def test_interpolate(self):
class MyModel(torch.nn.Module):
def forward(self, x):
size = [v * 2 for v in x.size()[2:]]
return torch.nn.functional.interpolate(x,
size=size,
mode="nearest")
ops_9 = [{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Concat"},
{"op_name" : "Cast"},
{"op_name" : "Shape"},
{"op_name" : "Slice"},
{"op_name" : "Cast"},
{"op_name" : "Div"},
{"op_name" : "Constant"},
{"op_name" : "Concat"},
{"op_name" : "Upsample",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops_10 = [{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Concat"},
{"op_name" : "Cast"},
{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice"},
{"op_name" : "Cast"},
{"op_name" : "Div"},
{"op_name" : "Constant"},
{"op_name" : "Concat"},
{"op_name" : "Resize",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(1, 2, 3, 4, requires_grad=True)
check_onnx_opsets_operator(MyModel(), x, ops, opset_versions=[9, 10],
input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]})
ops_9 = [{"op_name" : "Shape"},
{"op_name" : "Slice"},
{"op_name" : "Cast"},
{"op_name" : "Div"},
{"op_name" : "Constant"},
{"op_name" : "Concat"},
{"op_name" : "Upsample",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops_10 = [{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice"},
{"op_name" : "Cast"},
{"op_name" : "Div"},
{"op_name" : "Constant"},
{"op_name" : "Concat"},
{"op_name" : "Resize"}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(1, 2, 3, 4, requires_grad=True)
check_onnx_opsets_operator(MyModel(), x, ops, opset_versions=[9, 10])
class MyDynamicModel(torch.nn.Module):
def forward(self, x):
size = [v * 2 for v in x.size()[2:]]
# work around for now: turn the dynamic sizes into constant
size = [int(i) for i in size]
return torch.nn.functional.interpolate(x,
size=size,
mode="nearest")
ops_9 = [{"op_name" : "Constant"},
{"op_name" : "Upsample",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops_10 = [{"op_name" : "Constant"},
{"op_name" : "Resize",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(20, 16, 50)
check_onnx_opsets_operator(MyDynamicModel(), x, ops, opset_versions=[9, 10])
def test_grid_sample(self):
n, c, h_in, w_in, h_out, w_out = 1, 1, 3, 2, 2, 4
ops = {16: [{"op_name": "GridSample"}]}
class MyModule(Module):
def forward(self, x, grid, mode, padding_mode, align_corers):
return torch.nn.functional.grid_sample(x, grid, mode, padding_mode, align_corners)
for mode, padding_mode, align_corners in itertools.product(
("bilinear", "nearest", "bicubic"),
("zeros", "border", "reflection"),
(True, False),
):
args = (
torch.randn(n, c, h_in, w_in), # x
torch.randn(n, h_out, w_out, 2), # grid,
mode,
padding_mode,
align_corners,
)
check_onnx_opsets_operator(MyModule(), args, ops, opset_versions=[16], training=torch.onnx.TrainingMode.TRAINING)
check_onnx_opsets_operator(MyModule(), args, ops, opset_versions=[16], training=torch.onnx.TrainingMode.EVAL)
if __name__ == "__main__":
run_tests()