blob: 118b32fe15b01120599c12aefaf0dea8851deb2c [file] [log] [blame]
# Nodes represent a definition of a value in our graph of operators.
from typing import TYPE_CHECKING, Union, Callable, Any, Tuple, List, Optional, Dict
from .immutable_collections import immutable_dict, immutable_list
import torch
if TYPE_CHECKING:
from .graph import Graph
BaseArgumentTypes = Union[str, int, float, bool, torch.dtype, torch.Tensor]
base_types = BaseArgumentTypes.__args__ # type: ignore
Target = Union[Callable[..., Any], str]
Argument = Optional[Union[
Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types
List[Any], # actually Argument
Dict[str, Any], # actually Argument
slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
'Node',
BaseArgumentTypes
]]
class Node:
def __init__(self, graph: 'Graph', name: str, op: str, target: Target,
args: Tuple[Argument, ...], kwargs: Dict[str, Argument],
type : Optional[Any] = None) -> None:
self.graph = graph
self.name = name # unique name of value being created
assert op in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output', 'root']
self.op = op # the kind of operation = placeholder|call_method|call_module|call_function|get_attr
if op in ['call_method', 'call_module']:
assert isinstance(target, str)
self.target = target # for method/module/function, the name of the method/module/function/attr
# being invoked, e.g add, layer1, or torch.add
self._uses : Dict[Node, None] = {}
self._update_args_kwargs(map_arg(args, lambda x: x), map_arg(kwargs, lambda x: x)) # type: ignore
# All of the nodes that use the value produced by this Node
# Note one user may correspond to several uses, e.g. the node fo `x + x`
# would appear once here, but represents two uses.
#
# Is a dict to act as an "ordered set". Keys are significant, value dont-care
self.users : Dict['Node', None] = {}
# Type expression representing the output value of this node.
# This should contain the same class of Type objects that would appear
# as type annotations for function inputs/outputs.
#
# For placeholder nodes, this value will be used to type-annotate the
# generated function parameters.
# For the return ndoe, this value will be used to type-annotate the
# generated function return type. (Note this is a special case. `return`
# does not produce a value, it's more of a notation. Thus, this value
# describes the type of args[0] in the `return` node.
self.type : Optional[Any] = type
self._prev = self
self._next = self
self._erased = False
@property
def next(self) -> 'Node':
return self._next
@property
def prev(self) -> 'Node':
return self._prev
def prepend(self, x: 'Node'):
"""Insert x before this node in the list of nodes in the graph.
Before: p -> self
bx -> x -> ax
After: p -> x -> self
bx -> ax
Args:
x (Node): The node to put before this node. Must be a member of the same graph.
"""
assert self.graph == x.graph, "Attempting to move a Node into a different Graph"
x._remove_from_list()
p = self._prev
p._next, x._prev = x, p
x._next, self._prev = self, x
def append(self, x: 'Node'):
"""Insert x after this node in the list of nodes in the graph.
Equvalent to `self.next.prepend(x)`
Args:
x (Node): The node to put after this node. Must be a member of the same graph.
"""
self._next.prepend(x)
def _remove_from_list(self):
p, n = self._prev, self._next
p._next, n._prev = n, p
@property
def args(self) -> Tuple[Argument, ...]:
return self._args
@args.setter
def args(self, a : Tuple[Argument, ...]):
self._update_args_kwargs(map_arg(a, lambda x: x), self._kwargs) # type: ignore
@property
def kwargs(self) -> Dict[str, Argument]:
return self._kwargs
@kwargs.setter
def kwargs(self, k : Dict[str, Argument]):
self._update_args_kwargs(self._args, map_arg(k, lambda x: x)) # type: ignore
def _update_args_kwargs(self, new_args : Tuple[Argument, ...], new_kwargs : Dict[str, Argument]):
self._args = new_args
self._kwargs = new_kwargs
for old_use in self._uses.keys():
old_use.users.pop(self)
self._uses = {}
map_arg(self._args, lambda n: self._uses.setdefault(n))
map_arg(self._kwargs, lambda n: self._uses.setdefault(n))
for new_use in self._uses.keys():
new_use.users.setdefault(self)
def __repr__(self) -> str:
return self.name
def replace_all_uses_with(self, replace_with : 'Node') -> List['Node']:
"""
Replace all uses of `self` in the Graph with the Node `replace_with`.
Returns the list of nodes on which this change was made.
"""
to_process = list(self.users)
for use_node in to_process:
def maybe_replace_node(n : Node) -> Node:
if n == self:
return replace_with
else:
return n
new_args = map_arg(use_node.args, maybe_replace_node)
new_kwargs = map_arg(use_node.kwargs, maybe_replace_node)
assert isinstance(new_args, tuple)
assert isinstance(new_kwargs, dict)
use_node._update_args_kwargs(new_args, new_kwargs)
assert len(self.users) == 0
return to_process
def map_arg(a: Argument, fn: Callable[[Node], Argument]) -> Argument:
""" apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """
if isinstance(a, tuple):
return tuple(map_arg(elem, fn) for elem in a)
if isinstance(a, list):
return immutable_list(map_arg(elem, fn) for elem in a)
elif isinstance(a, dict):
return immutable_dict((k, map_arg(v, fn)) for k, v in a.items())
elif isinstance(a, slice):
return slice(map_arg(a.start, fn), map_arg(a.stop, fn), map_arg(a.step, fn))
elif isinstance(a, Node):
return fn(a)
else:
return a