| #include <torch/csrc/cuda/python_nccl.h> |
| |
| #include <torch/csrc/cuda/nccl.h> |
| #include <torch/csrc/DynamicTypes.h> |
| #include <torch/csrc/Exceptions.h> |
| #include <torch/csrc/THP.h> |
| #include <torch/csrc/Types.h> |
| #include <torch/csrc/cuda/THCP.h> |
| #include <torch/csrc/cuda/nccl.h> |
| #include <ATen/core/functional.h> |
| |
| #include <c10/cuda/CUDAGuard.h> |
| |
| #include <nccl.h> |
| |
| #include <sstream> |
| #include <unordered_map> |
| |
| using namespace at; |
| using namespace torch; |
| using namespace torch::cuda::nccl; |
| using namespace torch::cuda::nccl::detail; |
| |
| static const char* COMM_CAPSULE_NAME = "torch.cuda.nccl.Communicator"; |
| |
| PyObject* THCPModule_nccl_version(PyObject* self, PyObject* args) { |
| return PyInt_FromLong(version()); |
| } |
| |
| PyObject* THCPModule_nccl_unique_id(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| ncclUniqueId id; |
| NCCL_CHECK(ncclGetUniqueId(&id)); |
| return PyBytes_FromStringAndSize((char*)&id, NCCL_UNIQUE_ID_BYTES); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static ncclComm_t unpack_nccl_comm(PyObject* capsule) { |
| ncclComm_t comm = |
| (ncclComm_t)PyCapsule_GetPointer(capsule, COMM_CAPSULE_NAME); |
| if (!comm) |
| throw python_error(); |
| return comm; |
| } |
| |
| static void destroy_nccl_comm(PyObject* capsule) { |
| /* |
| * TODO(T30279827) Temporarily disable calling ncclCommDestroy |
| * Calling ncclCommDestroy while program exiting is undefined |
| * according to Nvidia, and lead to segfault in NCCL 2 |
| * (whether it is called before or after the CUDA runtime destructor). |
| * Temporarily disable it in destructor to avoid segfault. |
| * Following up with Nvidia for long term solution. |
| */ |
| return; |
| |
| HANDLE_TH_ERRORS |
| ncclComm_t comm = unpack_nccl_comm(capsule); |
| with_no_gil([&] { ncclCommDestroy(comm); }); |
| END_HANDLE_TH_ERRORS_RET() |
| } |
| |
| static std::vector<c10::optional<at::cuda::CUDAStream>> unpack_streams(PyObject* obj, size_t size) { |
| if (obj == Py_None) { |
| return std::vector<c10::optional<at::cuda::CUDAStream>>(size, c10::nullopt); |
| } |
| auto streams = THPUtils_PySequence_to_CUDAStreamList(obj); |
| if (streams.size() != size) { |
| throw std::runtime_error( |
| "number of streams is not equal to number of inputs"); |
| } |
| return streams; |
| } |
| |
| static std::vector<at::Tensor> extract_tensors(PyObject* obj); |
| |
| static std::vector<ncclComm_t> unpack_comms(PyObject* obj, size_t size) { |
| if (obj == Py_None) { |
| return std::vector<ncclComm_t>(); |
| } |
| std::vector<ncclComm_t> comms; |
| if (PyCapsule_CheckExact(obj)) { |
| comms = {unpack_nccl_comm(obj)}; |
| } else { |
| auto seq = THPObjectPtr(PySequence_Fast(obj, "comm is not a sequence")); |
| if (!seq) |
| throw python_error(); |
| auto size = PySequence_Fast_GET_SIZE(seq.get()); |
| comms = std::vector<ncclComm_t>(size); |
| for (int64_t i = 0; i < size; i++) { |
| comms[i] = unpack_nccl_comm(PySequence_Fast_GET_ITEM(seq.get(), i)); |
| } |
| } |
| if (comms.size() != size) { |
| throw std::runtime_error( |
| "number of communicators is not equal to number of inputs"); |
| } |
| return comms; |
| } |
| |
| PyObject* THCPModule_nccl_init_rank(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| int nranks; |
| const char* id; |
| Py_ssize_t id_len; |
| int rank; |
| |
| if (!PyArg_ParseTuple( |
| args, "is#i:nccl_init_rank", &nranks, &id, &id_len, &rank)) { |
| return nullptr; |
| } |
| THPUtils_assert( |
| id_len == NCCL_UNIQUE_ID_BYTES, |
| "invalid unqiue_id (expected %d bytes, got %zd)", |
| NCCL_UNIQUE_ID_BYTES, |
| id_len); |
| |
| ncclUniqueId commId; |
| memcpy(&commId, id, NCCL_UNIQUE_ID_BYTES); |
| ncclComm_t comm; |
| with_no_gil( |
| [&] { NCCL_CHECK(ncclCommInitRank(&comm, nranks, commId, rank)); }); |
| return PyCapsule_New(comm, COMM_CAPSULE_NAME, &destroy_nccl_comm); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_nccl_reduce(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject *_inputs, *_outputs, *_streams, *_comms; |
| int root, op; |
| |
| if (!PyArg_ParseTuple( |
| args, |
| "OOiiOO", |
| &_inputs, |
| &_outputs, |
| &root, |
| &op, |
| &_streams, |
| &_comms)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "nccl_reduce", |
| 1, |
| "(sequence[Tensor] inputs, sequence[Tensor] outputs, int root," |
| " int op, sequence[torch.cuda.Stream or None]"); |
| return nullptr; |
| } |
| |
| std::vector<at::Tensor> inputs = extract_tensors(_inputs); |
| std::vector<at::Tensor> outputs = extract_tensors(_outputs); |
| std::vector<c10::optional<at::cuda::CUDAStream>> streams = unpack_streams(_streams, inputs.size()); |
| auto user_comms = unpack_comms(_comms, inputs.size()); |
| |
| with_no_gil([&] { |
| torch::cuda::nccl::reduce(inputs, outputs, root, op, streams, user_comms); |
| }); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_nccl_all_reduce(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject *_inputs, *_outputs, *_streams, *_comms; |
| int op; |
| |
| if (!PyArg_ParseTuple( |
| args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "nccl_all_reduce", |
| 1, |
| "(sequence[Tensor] inputs, sequence[Tensor] outputs, int op," |
| " sequence[torch.cuda.Stream] streams," |
| " sequence[torch.cuda.nccl.Communicator] comms)"); |
| return nullptr; |
| } |
| |
| std::vector<at::Tensor> inputs = extract_tensors(_inputs); |
| std::vector<at::Tensor> outputs = extract_tensors(_outputs); |
| auto streams = unpack_streams(_streams, inputs.size()); |
| auto user_comms = unpack_comms(_comms, inputs.size()); |
| |
| with_no_gil([&] { |
| check_inputs(inputs, outputs, 1, 1); |
| size_t len = inputs.size(); |
| |
| ncclDataType_t data_type = get_data_type(inputs[0]); |
| |
| int64_t count = inputs[0].numel(); |
| auto comms = user_comms.empty() ? get_communicators(inputs) |
| : ArrayRef<ncclComm_t>(user_comms); |
| AutoNcclGroup nccl_group_guard; |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < len; i++) { |
| int device = inputs[i].get_device(); |
| device_guard.set_index(device); |
| auto stream = !streams[i] |
| ? at::cuda::getCurrentCUDAStream(device).stream() |
| : streams[i]->stream(); |
| NCCL_CHECK(ncclAllReduce( |
| inputs[i].data_ptr(), |
| outputs[i].data_ptr(), |
| count, |
| data_type, |
| (ncclRedOp_t)op, |
| comms[i], |
| stream)); |
| } |
| }); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_nccl_broadcast(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject *_inputs, *_streams, *_comms; |
| int root; |
| |
| if (!PyArg_ParseTuple(args, "OiOO", &_inputs, &root, &_streams, &_comms)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "nccl_broadcast", |
| 1, |
| "(sequence[Tensor] inputs, int root)"); |
| return nullptr; |
| } |
| |
| std::vector<at::Tensor> inputs = extract_tensors(_inputs); |
| THPUtils_assert(root >= 0 && (size_t)root < inputs.size(), "invalid root"); |
| auto streams = unpack_streams(_streams, inputs.size()); |
| auto user_comms = unpack_comms(_comms, inputs.size()); |
| |
| with_no_gil( |
| [&] { torch::cuda::nccl::broadcast(inputs, streams, user_comms); }); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_nccl_all_gather(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject *_inputs, *_outputs, *_streams, *_comms; |
| |
| if (!PyArg_ParseTuple( |
| args, "OOOO", &_inputs, &_outputs, &_streams, &_comms)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "nccl_all_gather", |
| 1, |
| "(sequence[Tensor] inputs, sequence[Tensor] outputs"); |
| return nullptr; |
| } |
| |
| std::vector<at::Tensor> inputs = extract_tensors(_inputs); |
| std::vector<at::Tensor> outputs = extract_tensors(_outputs); |
| auto streams = unpack_streams(_streams, inputs.size()); |
| auto user_comms = unpack_comms(_comms, inputs.size()); |
| |
| with_no_gil([&] { |
| size_t len = inputs.size(); |
| check_inputs(inputs, outputs, len, 1); |
| |
| ncclDataType_t data_type = get_data_type(inputs[0]); |
| |
| int64_t count = inputs[0].numel(); |
| auto comms = user_comms.empty() ? get_communicators(inputs) |
| : ArrayRef<ncclComm_t>(user_comms); |
| AutoNcclGroup nccl_group_guard; |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < len; i++) { |
| int device = inputs[i].get_device(); |
| device_guard.set_index(device); |
| auto stream = !streams[i] |
| ? at::cuda::getCurrentCUDAStream(device).stream() |
| : streams[i]->stream(); |
| #if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2) |
| NCCL_CHECK(ncclAllGather( |
| inputs[i].data_ptr(), |
| outputs[i].data_ptr(), |
| count, |
| data_type, |
| comms[i], |
| stream)); |
| #else |
| NCCL_CHECK(ncclAllGather( |
| inputs[i].data_ptr(), |
| count, |
| data_type, |
| outputs[i].data_ptr(), |
| comms[i], |
| stream)); |
| #endif |
| } |
| }); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_nccl_reduce_scatter(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject *_inputs, *_outputs, *_streams, *_comms; |
| int op; |
| |
| if (!PyArg_ParseTuple( |
| args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "nccl_reduce_scatter", |
| 1, |
| "(sequence[Tensor] inputs, sequence[Tensor] outputs, int op"); |
| return nullptr; |
| } |
| |
| std::vector<at::Tensor> inputs = extract_tensors(_inputs); |
| std::vector<at::Tensor> outputs = extract_tensors(_outputs); |
| auto streams = unpack_streams(_streams, inputs.size()); |
| auto user_comms = unpack_comms(_comms, inputs.size()); |
| |
| with_no_gil([&] { |
| size_t len = inputs.size(); |
| check_inputs(inputs, outputs, 1, len); |
| |
| ncclDataType_t data_type = get_data_type(inputs[0]); |
| |
| int64_t count = inputs[0].numel() / len; |
| auto comms = user_comms.empty() ? get_communicators(inputs) |
| : ArrayRef<ncclComm_t>(user_comms); |
| AutoNcclGroup nccl_group_guard; |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < len; i++) { |
| int device = inputs[i].get_device(); |
| device_guard.set_index(device); |
| auto stream = !streams[i] |
| ? at::cuda::getCurrentCUDAStream(device).stream() |
| : streams[i]->stream(); |
| NCCL_CHECK(ncclReduceScatter( |
| inputs[i].data_ptr(), |
| outputs[i].data_ptr(), |
| count, |
| data_type, |
| (ncclRedOp_t)op, |
| comms[i], |
| stream)); |
| } |
| }); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static std::vector<at::Tensor> extract_tensors(PyObject* obj) { |
| auto seq = THPObjectPtr(PySequence_Fast(obj, "expected a sequence")); |
| if (!seq) |
| throw python_error(); |
| |
| std::vector<at::Tensor> list; |
| Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get()); |
| for (Py_ssize_t i = 0; i < length; i++) { |
| PyObject* item = PySequence_Fast_GET_ITEM(seq.get(), i); |
| if (!THPVariable_Check(item)) { |
| throw TypeError( |
| "expected Tensor at %d (got %s)", (int)i, Py_TYPE(item)->tp_name); |
| } |
| auto var = (THPVariable*)item; |
| list.emplace_back(var->cdata); |
| } |
| return list; |
| } |