blob: 8aeba37528a30b508d2d0fd1567ed06d7ae1f4e1 [file] [log] [blame]
#include <torch/csrc/cuda/python_nccl.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/Types.h>
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/cuda/nccl.h>
#include <ATen/core/functional.h>
#include <c10/cuda/CUDAGuard.h>
#include <nccl.h>
#include <sstream>
#include <unordered_map>
using namespace at;
using namespace torch;
using namespace torch::cuda::nccl;
using namespace torch::cuda::nccl::detail;
static const char* COMM_CAPSULE_NAME = "torch.cuda.nccl.Communicator";
PyObject* THCPModule_nccl_version(PyObject* self, PyObject* args) {
return PyInt_FromLong(version());
}
PyObject* THCPModule_nccl_unique_id(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
ncclUniqueId id;
NCCL_CHECK(ncclGetUniqueId(&id));
return PyBytes_FromStringAndSize((char*)&id, NCCL_UNIQUE_ID_BYTES);
END_HANDLE_TH_ERRORS
}
static ncclComm_t unpack_nccl_comm(PyObject* capsule) {
ncclComm_t comm =
(ncclComm_t)PyCapsule_GetPointer(capsule, COMM_CAPSULE_NAME);
if (!comm)
throw python_error();
return comm;
}
static void destroy_nccl_comm(PyObject* capsule) {
/*
* TODO(T30279827) Temporarily disable calling ncclCommDestroy
* Calling ncclCommDestroy while program exiting is undefined
* according to Nvidia, and lead to segfault in NCCL 2
* (whether it is called before or after the CUDA runtime destructor).
* Temporarily disable it in destructor to avoid segfault.
* Following up with Nvidia for long term solution.
*/
return;
HANDLE_TH_ERRORS
ncclComm_t comm = unpack_nccl_comm(capsule);
with_no_gil([&] { ncclCommDestroy(comm); });
END_HANDLE_TH_ERRORS_RET()
}
static std::vector<c10::optional<at::cuda::CUDAStream>> unpack_streams(PyObject* obj, size_t size) {
if (obj == Py_None) {
return std::vector<c10::optional<at::cuda::CUDAStream>>(size, c10::nullopt);
}
auto streams = THPUtils_PySequence_to_CUDAStreamList(obj);
if (streams.size() != size) {
throw std::runtime_error(
"number of streams is not equal to number of inputs");
}
return streams;
}
static std::vector<at::Tensor> extract_tensors(PyObject* obj);
static std::vector<ncclComm_t> unpack_comms(PyObject* obj, size_t size) {
if (obj == Py_None) {
return std::vector<ncclComm_t>();
}
std::vector<ncclComm_t> comms;
if (PyCapsule_CheckExact(obj)) {
comms = {unpack_nccl_comm(obj)};
} else {
auto seq = THPObjectPtr(PySequence_Fast(obj, "comm is not a sequence"));
if (!seq)
throw python_error();
auto size = PySequence_Fast_GET_SIZE(seq.get());
comms = std::vector<ncclComm_t>(size);
for (int64_t i = 0; i < size; i++) {
comms[i] = unpack_nccl_comm(PySequence_Fast_GET_ITEM(seq.get(), i));
}
}
if (comms.size() != size) {
throw std::runtime_error(
"number of communicators is not equal to number of inputs");
}
return comms;
}
PyObject* THCPModule_nccl_init_rank(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
int nranks;
const char* id;
Py_ssize_t id_len;
int rank;
if (!PyArg_ParseTuple(
args, "is#i:nccl_init_rank", &nranks, &id, &id_len, &rank)) {
return nullptr;
}
THPUtils_assert(
id_len == NCCL_UNIQUE_ID_BYTES,
"invalid unqiue_id (expected %d bytes, got %zd)",
NCCL_UNIQUE_ID_BYTES,
id_len);
ncclUniqueId commId;
memcpy(&commId, id, NCCL_UNIQUE_ID_BYTES);
ncclComm_t comm;
with_no_gil(
[&] { NCCL_CHECK(ncclCommInitRank(&comm, nranks, commId, rank)); });
return PyCapsule_New(comm, COMM_CAPSULE_NAME, &destroy_nccl_comm);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_reduce(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_outputs, *_streams, *_comms;
int root, op;
if (!PyArg_ParseTuple(
args,
"OOiiOO",
&_inputs,
&_outputs,
&root,
&op,
&_streams,
&_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_reduce",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int root,"
" int op, sequence[torch.cuda.Stream or None]");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
std::vector<c10::optional<at::cuda::CUDAStream>> streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
with_no_gil([&] {
torch::cuda::nccl::reduce(inputs, outputs, root, op, streams, user_comms);
});
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_all_reduce(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_outputs, *_streams, *_comms;
int op;
if (!PyArg_ParseTuple(
args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_all_reduce",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op,"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
with_no_gil([&] {
check_inputs(inputs, outputs, 1, 1);
size_t len = inputs.size();
ncclDataType_t data_type = get_data_type(inputs[0]);
int64_t count = inputs[0].numel();
auto comms = user_comms.empty() ? get_communicators(inputs)
: ArrayRef<ncclComm_t>(user_comms);
AutoNcclGroup nccl_group_guard;
at::cuda::OptionalCUDAGuard device_guard;
for (size_t i = 0; i < len; i++) {
int device = inputs[i].get_device();
device_guard.set_index(device);
auto stream = !streams[i]
? at::cuda::getCurrentCUDAStream(device).stream()
: streams[i]->stream();
NCCL_CHECK(ncclAllReduce(
inputs[i].data_ptr(),
outputs[i].data_ptr(),
count,
data_type,
(ncclRedOp_t)op,
comms[i],
stream));
}
});
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_broadcast(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_streams, *_comms;
int root;
if (!PyArg_ParseTuple(args, "OiOO", &_inputs, &root, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_broadcast",
1,
"(sequence[Tensor] inputs, int root)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
THPUtils_assert(root >= 0 && (size_t)root < inputs.size(), "invalid root");
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
with_no_gil(
[&] { torch::cuda::nccl::broadcast(inputs, streams, user_comms); });
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_all_gather(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_outputs, *_streams, *_comms;
if (!PyArg_ParseTuple(
args, "OOOO", &_inputs, &_outputs, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_all_gather",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
with_no_gil([&] {
size_t len = inputs.size();
check_inputs(inputs, outputs, len, 1);
ncclDataType_t data_type = get_data_type(inputs[0]);
int64_t count = inputs[0].numel();
auto comms = user_comms.empty() ? get_communicators(inputs)
: ArrayRef<ncclComm_t>(user_comms);
AutoNcclGroup nccl_group_guard;
at::cuda::OptionalCUDAGuard device_guard;
for (size_t i = 0; i < len; i++) {
int device = inputs[i].get_device();
device_guard.set_index(device);
auto stream = !streams[i]
? at::cuda::getCurrentCUDAStream(device).stream()
: streams[i]->stream();
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
NCCL_CHECK(ncclAllGather(
inputs[i].data_ptr(),
outputs[i].data_ptr(),
count,
data_type,
comms[i],
stream));
#else
NCCL_CHECK(ncclAllGather(
inputs[i].data_ptr(),
count,
data_type,
outputs[i].data_ptr(),
comms[i],
stream));
#endif
}
});
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_reduce_scatter(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_outputs, *_streams, *_comms;
int op;
if (!PyArg_ParseTuple(
args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_reduce_scatter",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
with_no_gil([&] {
size_t len = inputs.size();
check_inputs(inputs, outputs, 1, len);
ncclDataType_t data_type = get_data_type(inputs[0]);
int64_t count = inputs[0].numel() / len;
auto comms = user_comms.empty() ? get_communicators(inputs)
: ArrayRef<ncclComm_t>(user_comms);
AutoNcclGroup nccl_group_guard;
at::cuda::OptionalCUDAGuard device_guard;
for (size_t i = 0; i < len; i++) {
int device = inputs[i].get_device();
device_guard.set_index(device);
auto stream = !streams[i]
? at::cuda::getCurrentCUDAStream(device).stream()
: streams[i]->stream();
NCCL_CHECK(ncclReduceScatter(
inputs[i].data_ptr(),
outputs[i].data_ptr(),
count,
data_type,
(ncclRedOp_t)op,
comms[i],
stream));
}
});
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static std::vector<at::Tensor> extract_tensors(PyObject* obj) {
auto seq = THPObjectPtr(PySequence_Fast(obj, "expected a sequence"));
if (!seq)
throw python_error();
std::vector<at::Tensor> list;
Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get());
for (Py_ssize_t i = 0; i < length; i++) {
PyObject* item = PySequence_Fast_GET_ITEM(seq.get(), i);
if (!THPVariable_Check(item)) {
throw TypeError(
"expected Tensor at %d (got %s)", (int)i, Py_TYPE(item)->tp_name);
}
auto var = (THPVariable*)item;
list.emplace_back(var->cdata);
}
return list;
}