blob: 858f6608ae7b25bd8853ce4f377aa107a3eec472 [file] [log] [blame]
import argparse
import os
import sys
import textwrap
import pandas as pd
def get_field(csv, model_name: str, field: str, typ=float):
return typ(csv.loc[csv["name"] == model_name][field])
def check_graph_breaks(actual_csv, expected_csv, expected_filename):
failed = []
improved = []
for model in actual_csv["name"]:
graph_breaks = get_field(actual_csv, model, "graph_breaks", typ=int)
expected_graph_breaks = get_field(expected_csv, model, "graph_breaks", typ=int)
if graph_breaks == expected_graph_breaks:
status = "PASS"
print(f"{model:34} {status}")
continue
elif graph_breaks > expected_graph_breaks:
status = "FAIL:"
failed.append(model)
elif graph_breaks < expected_graph_breaks:
status = "IMPROVED:"
improved.append(model)
print(
f"{model:34} {status:9} graph_breaks={graph_breaks}, expected={expected_graph_breaks}"
)
msg = ""
if failed or improved:
if failed:
msg += textwrap.dedent(
f"""
Error: {len(failed)} models have new dynamo graph breaks:
{' '.join(failed)}
"""
)
if improved:
msg += textwrap.dedent(
f"""
Improvement: {len(improved)} models have fixed dynamo graph breaks:
{' '.join(improved)}
"""
)
sha = os.getenv("SHA1", "{your CI commit sha}")
msg += textwrap.dedent(
f"""
If this change is expected, you can update `{expected_filename}` to reflect the new baseline.
from pytorch/pytorch root, run
`python benchmarks/dynamo/ci_expected_accuracy/update_expected.py {sha}`
and then `git add` the resulting local changes to expected graph break CSVs to your commit.
"""
)
return failed or improved, msg
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--actual", type=str, required=True)
parser.add_argument("--expected", type=str, required=True)
args = parser.parse_args()
actual = pd.read_csv(args.actual)
expected = pd.read_csv(args.expected)
failed, msg = check_graph_breaks(actual, expected, args.expected)
if failed:
print(msg)
sys.exit(1)
if __name__ == "__main__":
main()