blob: e271243b80ba6ab62fa10b59827f17b0c034fa12 [file] [log] [blame]
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/error_report.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/script/schema_matching.h>
namespace torch {
namespace jit {
namespace script {
struct RecursiveMethodCallError : public std::exception {};
void placeholderCreator(Function&) {
throw RecursiveMethodCallError();
}
void Function::ensure_defined() {
try {
if (function_creator_) {
auto creator = function_creator_;
function_creator_ = placeholderCreator;
creator(*this);
function_creator_ = nullptr;
}
} catch (RecursiveMethodCallError&) {
throw ErrorReport() // TODO: once lower_first_class methods is removed
// re-establish callsite info for debugging
<< " method '" << name() << "' is called recursively. "
<< "Recursive calls are not supported";
}
}
Value* Function::try_emit_call(
Graph& graph,
const SourceRange& loc,
c10::optional<NamedValue> self,
ArrayRef<NamedValue> args,
ArrayRef<NamedValue> kwargs,
std::stringstream& failure_messages,
bool conv_tensors_to_nums) {
ensure_defined();
auto fn = this->graph();
auto matched_schema = tryMatchSchema(
getSchema(),
loc,
graph,
std::move(self),
args,
kwargs,
failure_messages,
conv_tensors_to_nums);
if (!matched_schema)
return nullptr;
check_single_output();
Value* fn_constant = graph.insertNode(graph.create(prim::Constant))
->output()
->setType(FunctionType::create(shared_from_this()));
matched_schema->inputs.insert(matched_schema->inputs.begin(), fn_constant);
Value* result =
graph
.insertNode(graph.create(prim::CallFunction, matched_schema->inputs))
->output()
->setType(matched_schema->return_types.at(0));
return result;
}
Value* Function::emit_call(
Graph& graph,
const SourceRange& loc,
ArrayRef<NamedValue> args,
ArrayRef<NamedValue> kwargs) {
std::stringstream failure_messages;
if (auto result = try_emit_call(
graph,
loc,
c10::nullopt,
args,
kwargs,
failure_messages,
/*conv_tensors_to_nums=*/true)) {
return result;
}
throw ErrorReport(loc) << failure_messages.str();
}
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
to_impl(device, dtype, non_blocking);
}
void Module::to(at::ScalarType dtype, bool non_blocking) {
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
}
void Module::to(at::Device device, bool non_blocking) {
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
}
void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) {
ExportModule(*this, out, extra_files);
}
void Module::save(
const std::string& filename,
const ExtraFilesMap& extra_files) {
ExportModule(*this, filename, extra_files);
}
void module_state_to(
const Slot& s,
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// Need to access the `at::Tensor` as a `Variable` here.
autograd::Variable variable = s.value().toTensor();
// Use the data's original device or dtype if not supplied here.
auto new_data = variable.to(
device.value_or(variable.device()),
dtype.value_or(variable.scalar_type()),
non_blocking);
variable.set_data(new_data);
}
void Module::to_impl(
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// First call `to()` on every child module.
for (auto& child : get_modules()) {
child->to_impl(device, dtype, non_blocking);
}
// Then convert every of our parameters.
for (auto& parameter : get_parameters()) {
module_state_to(parameter, device, dtype, non_blocking);
}
// Then convert every tensor attributes (buffers).
for (auto& attr : get_attributes()) {
if (attr.type()->isSubtypeOf(TensorType::get())) {
module_state_to(attr, device, dtype, non_blocking);
}
}
}
// lower_first_class_method and lift_lowered_method are transitionary functions
// used to translate between module-as-first-class code generation,
// and module-as-special execution. Once module-as-first-class execution is
// debugged, then we can remove both and remove the lowered_functions_ table.
// remove the first module argument, replacing any access of its
// parameters/attributes with extra_ivalue input Slots that hold what value to
// pass into the graph
std::pair<std::shared_ptr<Graph>, std::vector<Slot>> lower_graph(
const ModulePtr& self,
Graph& g_,
size_t self_offset = 0) {
std::shared_ptr<Graph> g = g_.copy();
std::vector<Slot> extra_ivalues;
std::unordered_map<Slot, size_t> slot_to_offset;
struct ToScan {
ModulePtr mod;
Node* n;
size_t offset;
};
std::vector<ToScan> to_scan;
std::vector<Node*> to_clean; // nodes that should be dead at the end
auto getOrAddSlot = [&](const Slot& slot) -> Value* {
auto it = slot_to_offset.find(slot);
if (it != slot_to_offset.end()) {
size_t ivalues_start = g->inputs().size() - extra_ivalues.size();
return g->inputs().at(ivalues_start + it->second);
}
extra_ivalues.emplace_back(slot);
slot_to_offset[slot] = extra_ivalues.size() - 1;
return g->addInput()->setType(slot.type());
};
auto self_value = g->inputs().at(self_offset);
for (Use use : self_value->uses()) {
to_scan.emplace_back(ToScan{self, use.user, use.offset});
}
while (to_scan.size() > 0) {
auto e = to_scan.back();
to_scan.pop_back();
// when we lambda lift forks, first-class modules may be passed across
// forks. This code recursively lowers the module in the fork call.
if (e.n->kind() == prim::fork) {
auto subgraph = e.n->g(attr::Subgraph);
std::vector<Slot> new_slots;
std::tie(subgraph, new_slots) = lower_graph(e.mod, *subgraph, e.offset);
e.n->g_(attr::Subgraph, subgraph);
for (const Slot& slot : new_slots) {
e.n->addInput(getOrAddSlot(slot));
}
e.n->removeInput(e.offset);
continue;
}
if (e.n->kind() != prim::GetAttr) {
throw ErrorReport(e.n->sourceRange())
<< "temporary: the only valid use of a module is looking up an "
"attribute but found "
<< *e.n;
}
Slot slot(e.mod, e.mod->type()->getAttributeSlot(e.n->s(attr::name)));
if (ClassTypePtr c = e.n->output()->type()->cast<ClassType>()) {
if (c->qualname() == "__torch__.$Module") {
auto obj = slot.value().toObject();
for (Use use : e.n->output()->uses()) {
to_scan.emplace_back(ToScan{obj, use.user, use.offset});
}
to_clean.emplace_back(e.n);
continue;
}
}
e.n->output()->replaceAllUsesWith(getOrAddSlot(slot));
e.n->destroy();
}
while (to_clean.size() > 0) {
Node* n = to_clean.back();
AT_ASSERT(!n->hasUses());
n->destroy();
to_clean.pop_back();
}
AT_ASSERT(!self_value->hasUses());
g->eraseInput(self_offset);
return std::make_pair(std::move(g), std::move(extra_ivalues));
}
std::pair<std::shared_ptr<Function>, std::vector<Slot>> Module::
lower_first_class_method(Function* fn) {
fn->ensure_defined();
auto lowered = lower_graph(module_object(), *fn->graph());
CompilationUnit cu;
cu.set_optimized(fn->is_optimized());
std::shared_ptr<Function> new_func =
cu.create_function(fn->name(), lowered.first);
// generate the new schema
// slice away the self argument
std::vector<Argument> args(
fn->getSchema().arguments().begin() + 1,
fn->getSchema().arguments().end());
size_t id = 0;
for (const Slot& slot : lowered.second) {
std::ostringstream ss;
ss << "slot" << id++;
args.emplace_back(ss.str(), slot.type());
}
new_func->setSchema(fn->getSchema().cloneWithArguments(std::move(args)));
return std::make_pair(new_func, std::move(lowered.second));
}
static FunctionSchema sliceFirst(const FunctionSchema& schema) {
// we are required to slice out the self argument
// because it is not expected to appear in Module schema
// until the executor is made to be first-class
std::vector<Argument> sliced(
schema.arguments().begin() + 1, schema.arguments().end());
return schema.cloneWithArguments(std::move(sliced));
}
Method::Method(Module* owner, Function* first_class_function)
: owner_(owner), schema_(sliceFirst(first_class_function->getSchema())) {
std::tie(function_, initial_ivalues_) =
owner->lower_first_class_method(first_class_function);
}
void Module::define(const std::string& src, const ResolverPtr& resolver) {
class_compilation_unit().define(
src,
resolver ? resolver : script::nativeResolver(),
simpleSelf(module_object()->type()));
}
void Module::copy_into(
const ModuleLookup& module_lookup,
// translate current module singleton type to new module
// singleton type.
std::unordered_map<TypePtr, TypePtr>& type_remap,
std::vector<std::string> names) const {
auto curr = module_lookup(names);
type_remap[module_object()->type()] = curr->module_object()->type();
for (auto& param : get_parameters()) {
curr->register_parameter(
param.name(),
param.value().toTensor(),
/*is_buffer=*/false);
}
for (auto& attr : get_attributes()) {
curr->register_attribute(attr.name(), attr.type(), attr.value());
}
for (auto& mod : get_modules()) {
names.push_back(mod->name());
// Submodules must be translated first, otherwise parameter_remap entries
// will not be filled in for methods of this module.
mod->copy_into(module_lookup, type_remap, names);
names.pop_back();
}
for (auto& fn : class_compilation_unit().get_functions()) {
curr->clone_method(*this, fn->name(), type_remap);
}
}
void Module::clone_method(
const Module& orig,
const std::string& name,
const std::unordered_map<TypePtr, TypePtr>& type_remap) {
// type remapping - when we copy method implementations from one module
// singleton to another, we need to update the types of the self arguments
// to match the new module.
// XXX - this only handles modules that occur as variables, not modules
// that appear in aggregate types. Currently this works fine because
// we restrict how modules can be used during the lowering step. Eventually,
// we will need to decide what it means for us to 'copy' a module.
// For instance, we can copy just the state (parameters, attributes),
// but share the code. Or we can copy the code. If we choose to copy the
// code, what should we do about aggregate types that contain a module?
auto type_remap_fn = [&](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
const Function& fn = orig.class_compilation_unit().get_function(name);
auto graph = fn.graph()->copy();
graph->remapTypes(type_remap_fn);
auto schema = fn.getSchema().cloneWithRemappedTypes(type_remap_fn);
auto copied = class_compilation_unit().create_function(fn.name(), graph);
copied->setSchema(std::move(schema));
}
void Module::clone_method(const Module& orig, const std::string& name) {
std::unordered_map<TypePtr, TypePtr> type_remap;
std::vector<std::pair<const Module*, const Module*>> to_scan = {
{&orig, this}};
while (!to_scan.empty()) {
auto entry = to_scan.back();
to_scan.pop_back();
type_remap[entry.first->module_object()->type()] =
entry.second->module_object()->type();
for (const auto& sub : entry.first->get_modules()) {
to_scan.emplace_back(
sub.get(), entry.second->get_module(sub->name()).get());
}
}
return clone_method(orig, name, type_remap);
}
void Module::train(bool on) {
for (auto& submod : get_modules()) {
submod->train(on);
}
register_buffer("training", torch::tensor(on ? 1 : 0, at::kLong));
}
IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const {
// Classes live in the top-level compilation unit.
if (parent_) {
return parent_->create_class(name, std::move(stack));
}
// Look up the class
const auto classType =
class_compilation_unit().get_class(c10::QualifiedName(name));
if (!classType) {
AT_ERROR(
"Could not find class with name: '",
name.qualifiedName(),
"' in module.");
}
// Create a bare object with correct number of slots
const size_t numAttrs = classType->numAttributes();
auto obj = c10::ivalue::Object::create(classType, numAttrs);
// Invoke the `__init__()` of the class with the arguments provided.
Stack stackWithSelf = {obj};
for (auto& arg : stack) {
stackWithSelf.push_back(std::move(arg));
}
// Note: following Python, `__init__()` modifies its first parameter in-place
// and returns nothing.
classType->getMethod("__init__")->operator()(std::move(stackWithSelf));
return obj;
}
} // namespace script
} // namespace jit
} // namespace torch