| #include "torch/csrc/jit/script/compiler.h" |
| #include "torch/csrc/jit/passes/lower_tuples.h" |
| #include "torch/csrc/jit/operator.h" |
| #include "torch/csrc/jit/interpreter.h" |
| #include "torch/csrc/jit/ir.h" |
| #include "torch/csrc/jit/script/parser.h" |
| #include "torch/csrc/jit/assertions.h" |
| #include "torch/csrc/utils/object_ptr.h" |
| #include "torch/csrc/jit/operator.h" |
| |
| #include "torch/csrc/jit/constants.h" |
| |
| #include "ATen/optional.h" |
| |
| |
| #include <climits> |
| #include <set> |
| |
| namespace torch { |
| namespace jit { |
| namespace script { |
| |
| using SugaredValuePtr = std::shared_ptr<SugaredValue>; |
| using FunctionTable = std::unordered_map<std::string, Method&>; |
| using ValueTable = std::unordered_map<std::string, SugaredValuePtr>; |
| using AttributeMap = std::unordered_map<std::string, Const>; |
| using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>; |
| |
| struct NoneValue : SugaredValue { |
| NoneValue() {} |
| virtual std::string kind() const override { |
| return "None"; |
| } |
| }; |
| |
| struct PrintValue : public SugaredValue { |
| std::string kind() const override { |
| return "print"; |
| } |
| std::shared_ptr<SugaredValue> call( |
| SourceRange loc, |
| Method & m, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| size_t n_binders) override { |
| auto& g = *m.graph(); |
| if (!attributes.empty()) |
| throw ErrorReport(loc) << "print doesn't accept any keyword arguments"; |
| auto values = toValues(inputs); |
| ensureTensors(loc, values); |
| g.insertNode(g.create(prim::Print, values, 0) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc))); |
| return std::make_shared<NoneValue>(); |
| } |
| }; |
| |
| static Value* numToTensor(const SourceRange& loc, Value* value) { |
| auto& graph = *value->owningGraph(); |
| auto n = graph.insertNode(graph.createNumToTensor(value)) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)); |
| return n->output(); |
| } |
| |
| static Value* tensorToNum( |
| const SourceRange& loc, |
| Value* value, |
| const TypePtr type) { |
| auto& graph = *value->owningGraph(); |
| auto* result = graph.insertNode(graph.createTensorToNum(type, value)) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)) |
| ->output(); |
| return result; |
| } |
| |
| // expressions like int(x) |
| struct CastValue : public SugaredValue { |
| CastValue(TypePtr type) |
| : type(type) {} |
| std::string kind() const override { |
| std::stringstream ss; |
| ss << "<" << type->str() << " cast primitive>"; |
| return ss.str(); |
| } |
| std::shared_ptr<SugaredValue> call( |
| SourceRange loc, |
| Method & m, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| size_t n_binders) override { |
| if (!attributes.empty()) |
| throw ErrorReport(loc) << "casts do not accept any keyword arguments"; |
| if (inputs.size() != 1) |
| throw ErrorReport(loc) << "expected a single argument for cast"; |
| auto values = toValues(inputs); |
| Value* input = values.at(0); |
| if(!input->type()->isSubtypeOf(*type)) { |
| if(*type == *DynamicType::get()) { |
| if(!input->type()->isSubtypeOf(*NumberType::get())) { |
| throw ErrorReport(loc) << "expected a number"; |
| } |
| input = numToTensor(loc, input); |
| } else { |
| ensureTensors(loc, values); |
| input = tensorToNum(loc, values.at(0), type); |
| } |
| } |
| return std::make_shared<SimpleValue>(input); |
| } |
| private: |
| TypePtr type; |
| }; |
| |
| // Auxiliary data structure for desugaring variable binding into our always |
| // explicitly scoped language as we descend down |
| // nested control structures in the frontend (which themselves don't introduce |
| // scopes) |
| // |
| // The algorithm is roughly as follows: |
| // 1) While emitting a block within a control operator, add inputs and outputs |
| // from the block for each value referenced (both "reads" and "writes"). |
| // This sets the value up as a candidate loop carried dependency. |
| // 2) When we reach the end of the block, examine all the values in the current |
| // scope's value map. If the name also resides in an outer scope with a |
| // different Value*, this is a true loop-carried dependency. If not, this |
| // value was not assigned to. Replace all references to the block input |
| // with the Value* pointed to in the tightest enclosing scope. Then delete |
| // that block input and output. |
| // 3) When we emit the actual control operator, take all of the loop-carried |
| // dependency values as inputs and return them as outputs from the control |
| // op |
| // |
| // Note that an alternative implementation could only add the loop-carried dep |
| // inputs and outputs when we see a value that is mutated. This, however |
| // requires replacing all references to that value *within the current |
| // block* with a new input. That is to say: we need to traverse the pre- |
| // decessor nodes and replace inputs that reference that value with the |
| // newly-created input. This could be made less expensive with a change to |
| // the IR API, but for now we choose to pessimisitically create inputs and |
| // delete unnecessary ones later with replaceAllusesWith(). |
| struct Environment { |
| Environment(Method & method, const Resolver& resolver, Block* b, std::shared_ptr<Environment> next = nullptr) |
| : method(method), resolver(resolver), b(b), next(next) {} |
| |
| Method & method; |
| const Resolver& resolver; |
| std::vector<std::string> captured_inputs; |
| Block* b; |
| |
| std::shared_ptr<Environment> next; |
| |
| SugaredValuePtr findInThisFrame(const std::string& name) { |
| if (value_table.count(name)) { |
| return value_table.at(name); |
| } |
| return nullptr; |
| } |
| |
| SugaredValuePtr findInParentFrame(const std::string& name) { |
| return next ? next->findInAnyFrame(name) : nullptr; |
| } |
| |
| SugaredValuePtr findInAnyFrame(const std::string& name) { |
| for (auto runner = this; runner; runner = runner->next.get()) { |
| if(auto r = runner->findInThisFrame(name)) { |
| return r; |
| } |
| } |
| return nullptr; |
| } |
| |
| Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) { |
| return value_table.at(name)->asValue(loc, method); |
| } |
| |
| SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) { |
| // Create the input |
| Value* new_input = b->addInput()->setType(orig->type()); |
| |
| // Associate this name with this value |
| auto sv = std::make_shared<SimpleValue>(new_input); |
| value_table[name] = sv; |
| |
| // List as a positional input |
| captured_inputs.push_back(name); |
| |
| return sv; |
| } |
| |
| SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) { |
| auto in_frame = findInThisFrame(ident); |
| if (in_frame) |
| return in_frame; |
| |
| // recursively handles the case where parent blocks are also loops |
| auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr; |
| |
| // recursively create the captured input if it is the loop block |
| if (from_parent && getBlockOwningKind() == prim::Loop) { |
| if (Value* simple_val = asSimple(from_parent)) |
| from_parent = createCapturedInput(simple_val, ident); |
| } |
| return from_parent; |
| } |
| |
| Block* block() { |
| return b; |
| } |
| Symbol getBlockOwningKind() { |
| Symbol owning_kind = Symbol(); |
| if (b->owningNode()) { |
| owning_kind = b->owningNode()->kind(); |
| } |
| return owning_kind; |
| } |
| |
| void setVar(const SourceRange& loc, const std::string& name, Value* value) { |
| setSugaredVar(loc, name, std::make_shared<SimpleValue>(value)); |
| } |
| static Value* asSimple(SugaredValuePtr value) { |
| if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) { |
| return sv->getValue(); |
| } |
| return nullptr; |
| } |
| |
| void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) { |
| Value* as_simple_value = asSimple(value); |
| if (as_simple_value) |
| as_simple_value->setUniqueName(name); |
| // prevent re-assignment involving any sugared values |
| // any reassignment like: |
| // a = ... |
| // while ... |
| // a = .. |
| // requires 'a' to be first-class in the graph since its value depends on |
| // control flow |
| if(auto parent = findInParentFrame(name)) { |
| if(!as_simple_value) { |
| throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() << |
| " because " << name << " is not a first-class value. Only reassignments to first-class values are allowed"; |
| } |
| Value* simple_parent = asSimple(parent); |
| if(!simple_parent) { |
| throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() << |
| " and " << name << " is not a first-class value. Only reassignments to first-class values are allowed"; |
| } |
| if(!as_simple_value->type()->isSubtypeOf(*unshapedType(simple_parent->type()))) { |
| throw ErrorReport(loc) << "variable '" << name << "' previously has type " << simple_parent->type()->str() |
| << " but is now being assigned to a value of type " << as_simple_value->type()->str(); |
| } |
| } |
| if (as_simple_value) |
| createCapturedInputIfNeeded(loc, name); |
| value_table[name] = std::move(value); |
| } |
| |
| SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) { |
| return getSugaredVar(ident.name(), ident.range()); |
| } |
| Value* getVar(const Ident& ident) { |
| return getSugaredVar(ident)->asValue(ident.range(), method); |
| } |
| |
| SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) { |
| auto retval = createCapturedInputIfNeeded(range, ident); |
| |
| if(!retval) { |
| retval = resolver(ident); |
| } |
| |
| if(!retval) { |
| static std::unordered_map<std::string, SugaredValuePtr> globals = { |
| {"print", std::make_shared<PrintValue>()}, |
| {"float", std::make_shared<CastValue>(FloatType::get())}, |
| {"int", std::make_shared<CastValue>(IntType::get())}, |
| {"bool", std::make_shared<CastValue>(IntType::get())}, |
| // todo(zach): remove when we can correctly export torch.full via ONNX |
| // or we have implicit conversion that can convert numbers to tensors |
| {"_to_tensor", std::make_shared<CastValue>(DynamicType::get()) }, |
| }; |
| auto it = globals.find(ident); |
| if(it != globals.end()) |
| retval = it->second; |
| } |
| |
| if (!retval && required) { |
| throw ErrorReport(range) << "undefined value " << ident; |
| } |
| return retval; |
| } |
| |
| Value* getVar(const std::string& ident, SourceRange range) { |
| return getSugaredVar(ident, range)->asValue(range, method); |
| } |
| |
| // Given that after emitting statements in a block, we've added block inputs |
| // for all value references and assignments, delete inputs for which there was |
| // no assignment, only references. |
| void deleteExtraInputs(const SourceRange& loc) { |
| // note: skip i == 0, it is the loop trip count for inputs |
| // and the loop condition for outputs. |
| // captured_inputs is indexed by i - 1 since it only contains loop |
| // carried dependencies |
| // inputs: loop_counter, lcd0, lcd1, ... |
| // outputs: loop_condition, lcd0, lcd1, ... |
| // captured_inputs: lcd0, lcd1, ... |
| JIT_ASSERT(b->inputs().size() == b->outputs().size()); |
| JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1); |
| for(size_t i = b->inputs().size() - 1; i > 0; i--) { |
| // nothing changed along this loop |
| if(b->inputs()[i] == b->outputs()[i]) { |
| auto name = captured_inputs[i - 1]; |
| Value* orig = findInParentFrame(name)->asValue(loc, method); |
| b->inputs()[i]->replaceAllUsesWith(orig); |
| b->eraseInput(i); |
| b->eraseOutput(i); |
| captured_inputs.erase(captured_inputs.begin() + i - 1); |
| } |
| } |
| } |
| std::vector<std::string> definedVariables() { |
| std::vector<std::string> result; |
| for(auto & kv : value_table) { |
| result.push_back(kv.first); |
| } |
| return result; |
| } |
| private: |
| ValueTable value_table; |
| }; |
| |
| std::shared_ptr<SugaredValue> packOutputs(Graph& g, at::ArrayRef<Value*> values) { |
| if(values.size() == 1) { |
| return std::make_shared<SimpleValue>(values[0]); |
| } |
| return std::make_shared<SimpleValue>(g.insertNode(g.createTuple(values))->output()); |
| } |
| |
| Value* createNumber(Graph& g, const SourceRange& loc, const at::Tensor& val) { |
| JIT_ASSERT(val.numel() == 1); |
| auto* output = insertConstant(g, val, loc); |
| if (val.type().scalarType() == at::kLong) { |
| output->setType(IntType::get()); |
| } else if (val.type().scalarType() == at::kFloat) { |
| output->setType(FloatType::get()); |
| } else { |
| throw ErrorReport(loc) << "createNumber with unknown scalar type (" |
| << val.type().scalarType() << "). Please file a bug report."; |
| } |
| return output; |
| } |
| |
| Value* createStack(Graph& g, const SourceRange& loc, at::ArrayRef<Value*> inputs) { |
| // bake in constant propagation for the all-constant case because it is |
| // common to see constant lists like [1, 2] passed to attributes |
| bool all_constant = std::all_of(inputs.begin(), inputs.end(), [&](Value* v) { |
| return v->node()->kind() == prim::Constant; |
| }); |
| if(all_constant) { |
| auto values = fmap(inputs, [&](Value* v) { |
| return v->node()->t(attr::value); |
| }); |
| return insertConstant(g, at::stack(values), loc); |
| } |
| return g.insertNode(g.create(aten::stack, inputs) |
| ->i_(attr::dim, 0) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)))->output(); |
| } |
| |
| static bool isTensorSubtype(Value* v) { |
| return v->type()->isSubtypeOf(*DynamicType::get()); |
| } |
| |
| at::optional<std::vector<int64_t>> getIntListAttribute(at::optional<int32_t> N, Value* input) { |
| auto list = constant_as<Shared<jit::IntList>>(input); |
| if(list) |
| return std::vector<int64_t>(list.value()->elements()); |
| // broadcast IntList[3] with value 4 -> {4, 4, 4} |
| if(!N) |
| return at::nullopt; |
| auto r = constant_as<int64_t>(input); |
| if(!r) |
| return at::nullopt; |
| // broadcast to attribute size |
| return std::vector<int64_t>(*N, *r); |
| } |
| |
| // try to turn constant inputs into attributes |
| void liftConstantAttributes(const FunctionSchema& schema, Node* node) { |
| // we shouldn't start with attributes, just inputs |
| JIT_ASSERT(!node->hasAttributes()); |
| std::vector<Value*> new_inputs; |
| Attributes<Node> attributes; |
| for(size_t i = 0, n = 0; i < schema.arguments.size(); ++i) { |
| const auto& arg = schema.arguments[i]; |
| // this was a builtin with a vararg list lowered, |
| if(*arg.type == *ListType::ofTensors()) { |
| // we need to skip all the vararg nodes, and continue parsing the |
| // possible attribute nodes |
| size_t vararg_list_size = node->inputs().size() - (schema.arguments.size() - 1); |
| while(n < i + vararg_list_size) { |
| new_inputs.push_back(node->input(n++)); |
| } |
| continue; |
| } |
| auto input = node->input(n++); |
| switch(arg.type->kind()) { |
| case TypeKind::IntType:{ |
| auto r = constant_as<int64_t>(input); |
| if(!r) |
| return; |
| attributes.i_(Symbol::attr(arg.name), *r); |
| } break; |
| case TypeKind::FloatType: { |
| auto r = constant_as<double>(input); |
| if(!r) |
| return; |
| attributes.f_(Symbol::attr(arg.name), *r); |
| } break; |
| case TypeKind::NumberType: { |
| auto r = constant_as<at::Scalar>(input); |
| if(!r) |
| return; |
| attributes.t_(Symbol::attr(arg.name), r->toTensor()); |
| } break; |
| case TypeKind::ListType: { |
| auto elem = arg.type->expect<ListType>()->getElementType(); |
| if(elem->kind() == TypeKind::IntType) { |
| auto r = getIntListAttribute(arg.N, input); |
| if(!r) |
| return; |
| attributes.is_(Symbol::attr(arg.name), *r); |
| } else { |
| // only IntLists can become attributes, other |
| // types are not attribute-able |
| new_inputs.push_back(input); |
| } |
| } break; |
| default: |
| new_inputs.push_back(input); |
| } |
| } |
| // nothing changed no need to modify the node |
| if(!attributes.hasAttributes()) |
| return; |
| |
| node->removeAllInputs(); |
| for(Value* input : new_inputs) { |
| node->addInput(input); |
| } |
| node->copyAttributes(attributes); |
| } |
| |
| at::ArrayRef<Value*> createTupleUnpack(Value* v) { |
| // small peephole optimization to ensure IntList attributes can still turn |
| // into constants e.g. in x.expand([3, 4]) |
| if(v->node()->kind() == prim::TupleConstruct) |
| return v->node()->inputs(); |
| auto & g = *v->owningGraph(); |
| return g.insertNode(g.createTupleUnpack(v))->outputs(); |
| } |
| |
| static inline bool isIntUsedAsIntList( |
| const Value* value, |
| const Argument& arg) { |
| // Look for int[N] |
| return value->type()->kind() == TypeKind::IntType && |
| *arg.type == *ListType::ofInts() && arg.N; |
| } |
| |
| at::optional<std::vector<Value*>> tryMatchSchema( |
| const FunctionSchema& schema, |
| const SourceRange& loc, |
| Graph& graph, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| std::ostream& failure_messages) { |
| auto err = [&]() -> std::ostream& { |
| failure_messages << "\nfor operator " << schema << ":\n"; |
| return failure_messages; |
| }; |
| |
| std::vector<at::optional<NamedValue>> positional_inputs(schema.arguments.size(), at::nullopt); |
| |
| size_t total_inputs = attributes.size() + inputs.size(); |
| if(total_inputs > schema.arguments.size()) { |
| err() << "expected at most " << schema.arguments.size() << " arguments " |
| << "but found " << total_inputs << "\n" << loc << "\n"; |
| return at::nullopt; |
| } |
| // fill in positional arguments |
| for(size_t i = 0; i < inputs.size(); ++i) { |
| positional_inputs[i] = inputs[i]; |
| } |
| // fill in named arguments |
| for(const NamedValue& nv : attributes) { |
| auto idx = schema.argumentIndexWithName(nv.name); |
| if(!idx) { |
| err() << "unknown keyword argument '" << nv.name << "'\n" << nv.loc; |
| return at::nullopt; |
| } |
| if(positional_inputs[*idx]) { |
| err() << "argument '" << nv.name << "' specified twice \n" << nv.loc; |
| return at::nullopt; |
| } |
| positional_inputs[*idx] = nv; |
| } |
| // fill in default values |
| for(size_t i = 0; i < positional_inputs.size(); ++i) { |
| if(positional_inputs[i]) |
| continue; |
| auto default_value = schema.arguments[i].default_value; |
| if(!default_value) { |
| err() << "argument '" << schema.arguments[i].name << "' not provided.\n" << loc; |
| return at::nullopt; |
| } |
| positional_inputs[i] = NamedValue( |
| loc, |
| i, |
| insertConstant(graph, *default_value, loc) |
| ->setType(schema.arguments[i].type)); |
| } |
| |
| // check input types |
| std::vector<Value*> flat_inputs; |
| for(size_t i = 0; i < schema.arguments.size(); ++i) { |
| NamedValue v = *positional_inputs[i]; |
| const auto& arg = schema.arguments[i]; |
| |
| // some functions that take lists of integers for fixed size arrays |
| // also allow single ints to be passed in their place. |
| // the single int is then repeated to the length of the list |
| if (isIntUsedAsIntList(v.value, arg)) { |
| std::vector<Value*> repeated(*arg.N, v.value); |
| v.value = graph.insertNode(graph.createList(IntType::get(), repeated))->output(); |
| } |
| |
| // Allow tuples that only contain integers to turn into lists of integers |
| if(*ListType::ofInts() == *arg.type && |
| v.value->type()->kind() == TypeKind::TupleType && |
| v.value->type()->isSubtypeOf(*ListType::ofInts())) { |
| auto unpacked = createTupleUnpack(v.value); |
| v.value = graph.insertNode(graph.createList(IntType::get(), unpacked))->output(); |
| } |
| |
| if(!v.value->type()->isSubtypeOf(*arg.type)) { |
| err() << "expected a value of type " << arg.type->str() << " for argument '" << arg.name << "' but found " |
| << v.value->type()->str() << "\n" |
| << v.loc; |
| return at::nullopt; |
| } |
| |
| // we only support tensor lists for builtins, where they must be flattened |
| if(arg.type->isSubtypeOf(*ListType::ofTensors())) { |
| auto outputs = createTupleUnpack(v.value); |
| flat_inputs.insert(flat_inputs.end(), outputs.begin(), outputs.end()); |
| } else { |
| flat_inputs.push_back(v.value); |
| } |
| } |
| |
| return flat_inputs; |
| } |
| |
| |
| static std::shared_ptr<SugaredValue> tryEmitBuiltin( |
| const std::shared_ptr<Operator>& op, |
| std::stringstream& failure_messages, |
| const SourceRange& loc, |
| Method& method, |
| const std::string & name, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes) { |
| |
| auto graph = method.graph(); |
| auto flat_inputs = tryMatchSchema(op->schema, loc, *graph, inputs, attributes, failure_messages); |
| if(!flat_inputs) |
| return nullptr; |
| // we successfully matched this schema, construct the node |
| |
| // note: we always construct purely positional nodes here |
| // the pass liftConstantAttributes replaces the node with with one that |
| // uses attributes if all the attributes ended up as constants |
| |
| NodeKind kind(Symbol::aten(name)); |
| auto n = graph->insertNode(graph->create(kind, *flat_inputs, 0)) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)); |
| |
| // special case for chunk when the chunks=<const> is known |
| // DO NOT ADD MORE SPECIAL CASES HERE, REFACTOR INTO A FUNCTION IF |
| // NEEDED |
| if(n->kind() == aten::chunk) { |
| auto value = constant_as<int64_t>((*flat_inputs)[1]); |
| if(!value) { |
| throw ErrorReport(loc) << "argument 'chunks' must be a constant"; |
| } |
| for(int64_t i = 0; i < *value; ++i) |
| n->addOutput(); |
| } else { |
| for(auto & ret : op->schema.returns) { |
| n->addOutput()->setType(ret.type); |
| } |
| } |
| |
| if(op->hasAttributedVersion()) |
| liftConstantAttributes(op->schema, n); |
| |
| // assert that we did indeed create an op that has implementation |
| // otherwise schema and dispatch are not in sync |
| getOperation(n); |
| |
| return packOutputs(*graph, n->outputs()); |
| } |
| |
| static std::string prefixLine(const std::string& str, std::string prefix) { |
| std::stringstream ss; |
| bool was_newline = true; |
| for(auto c : str) { |
| if(was_newline) |
| ss << prefix; |
| ss.put(c); |
| was_newline = c == '\n'; |
| } |
| return ss.str(); |
| } |
| |
| std::shared_ptr<SugaredValue> emitBuiltinCall( |
| const SourceRange& loc, |
| Method& method, |
| const std::string & name, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| // if true, emitBuiltinCall will throw an exception if this builtin does not exist, |
| // otherwise it will return nullptr if the builtin is not found. |
| bool required) { |
| |
| const auto& variants = getAllOperatorsFor(Symbol::aten(name)); |
| std::stringstream failure_messages; |
| for (const std::shared_ptr<Operator>& op : variants) { |
| if (auto result = tryEmitBuiltin( |
| op, failure_messages, loc, method, name, inputs, attributes)) { |
| return result; |
| } |
| } |
| // none of the options worked |
| if(!required) { |
| return nullptr; |
| } |
| if(variants.size() == 0) { |
| throw ErrorReport(loc) << "unknown builtin op"; |
| } |
| throw ErrorReport(loc) << "arguments for call are not valid:\n" |
| << prefixLine(failure_messages.str(), " ") |
| << "for call at"; |
| } |
| |
| static Value* ensureTensor(const SourceRange& range, Value* v) { |
| if(!isTensorSubtype(v)) { |
| throw ErrorReport(range) << "expected a tensor value but found a " |
| << v->type()->str(); |
| } |
| return v; |
| } |
| |
| static Value* ensureInt(const SourceRange& range, Value* v) { |
| if(!v->type()->isSubtypeOf(*IntType::get())) { |
| throw ErrorReport(range) << "expected a int but found a " |
| << v->type()->str(); |
| } |
| return v; |
| } |
| |
| |
| void ensureTensors(const SourceRange& range, at::ArrayRef<Value*> values) { |
| for(auto value : values) { |
| ensureTensor(range, value); |
| } |
| } |
| |
| static Value* identity(const SourceRange& range, Value* v) { |
| return v; |
| } |
| |
| |
| std::shared_ptr<SugaredValue> BuiltinFunction::call( |
| SourceRange loc, |
| Method & m, |
| at::ArrayRef<NamedValue> inputs_, |
| at::ArrayRef<NamedValue> attributes, |
| size_t n_binders) { |
| std::vector<NamedValue> inputs; |
| if (value) |
| inputs.push_back(*value); |
| inputs.insert(inputs.end(), inputs_.begin(), inputs_.end()); |
| return emitBuiltinCall(loc, m, name, inputs, attributes, true); |
| } |
| |
| struct to_ir { |
| to_ir( |
| Def def, |
| FunctionTable& function_table, |
| const Resolver& resolver, |
| SugaredValuePtr self, |
| Method& method) // method being constructed |
| : method(method) |
| , graph(method.graph()) |
| , def(def) |
| , function_table(function_table) |
| , resolver(resolver) |
| , environment_stack(nullptr) { |
| pushFrame(graph->block()); |
| |
| std::vector<Argument> arguments, returns; // for schema |
| // inputs |
| auto it = def.params().begin(); |
| auto end = def.params().end(); |
| if(self) { |
| if(it == end) |
| throw ErrorReport(def.params().range()) << "methods must have a self argument"; |
| environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self); |
| ++it; |
| } |
| for(;it != end; ++it) { |
| auto& name = (*it).ident().name(); |
| arguments.push_back({name, DynamicType::get()}); |
| environment_stack->setVar((*it).ident().range(), name, graph->addInput(name)); |
| } |
| // body |
| auto stmts = def.statements(); |
| auto stmts_begin = stmts.begin(); |
| auto stmts_end = stmts.end(); |
| bool has_return = false; |
| if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) { |
| --stmts_end; |
| has_return = true; |
| } |
| |
| emitStatements(stmts_begin, stmts_end); |
| |
| // outputs |
| if (has_return) { |
| auto return_stmt = Return(*stmts_end); |
| auto results = getValues(return_stmt.values(), true, identity); |
| // a single return value that is a tuple expands in place: |
| // return a |
| if (return_stmt.values().size() == 1 && results.size() == 1) { |
| auto result = results.at(0); |
| if(result->type()->cast<TupleType>()) { |
| results = createTupleUnpack(result); |
| } |
| } |
| auto range = return_stmt.range(); |
| for (auto& r : results) { |
| if(r->type()->isSubtypeOf(*NumberType::get())) { |
| graph->registerOutput(numToTensor(range, r)); |
| } else { |
| ensureTensor(range, r); |
| graph->registerOutput(r); |
| } |
| returns.push_back({"", DynamicType::get()}); |
| } |
| } |
| |
| method.setSchema({def.name().name(), std::move(arguments), std::move(returns)}); |
| // remove any uses of tuples that we inserted |
| LowerTuples(graph); |
| } |
| |
| private: |
| Method& method; |
| std::shared_ptr<Graph> graph; |
| Def def; |
| FunctionTable& function_table; |
| const Resolver& resolver; |
| |
| // Singly-linked list of environments. This top element contains a member |
| // `next` that points to the most immediate enclosing scope's value. |
| std::shared_ptr<Environment> environment_stack; |
| |
| void pushFrame(Block * b) { |
| environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack); |
| } |
| std::shared_ptr<Environment> popFrame() { |
| auto old_frame = environment_stack; |
| environment_stack = environment_stack->next; |
| return old_frame; |
| } |
| void emitStatements(const List<Stmt>& statements) { |
| return emitStatements(statements.begin(), statements.end()); |
| } |
| void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) { |
| for (; begin != end; ++begin) { |
| auto stmt = *begin; |
| switch (stmt.kind()) { |
| case TK_IF: |
| emitIf(If(stmt)); |
| break; |
| case TK_WHILE: |
| emitWhile(While(stmt)); |
| break; |
| case TK_FOR: |
| emitFor(For(stmt)); |
| break; |
| case TK_ASSIGN: |
| emitAssignment(Assign(stmt)); |
| break; |
| case TK_GLOBAL: |
| for (auto ident : Global(stmt).names()) { |
| const auto& name = Ident(ident).name(); |
| environment_stack->setVar(ident.range(), name, graph->addInput(name)); |
| } |
| break; |
| case TK_EXPR_STMT: { |
| auto exprs = ExprStmt(stmt).exprs(); |
| for (const auto& expr : exprs) { |
| emitSugaredExpr(expr, 0); |
| } |
| } |
| break; |
| case TK_RETURN: |
| throw ErrorReport(stmt) << "return statements can appear only at the end " |
| << "of the function body"; |
| break; |
| } |
| } |
| } |
| |
| std::shared_ptr<Environment> emitSingleIfBranch( |
| Block* b, |
| const List<Stmt> branch) { |
| pushFrame(b); |
| WithInsertPoint guard(b); |
| emitStatements(branch); |
| return popFrame(); |
| } |
| |
| Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) { |
| return graph |
| ->create(kind, n_outputs) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)); |
| } |
| |
| Value* emitTernaryIf(const TernaryIf& expr) { |
| Value* cond_value = emitCond(expr.cond()); |
| |
| Node* n = graph->insertNode(create(prim::If, expr.range(), 0)); |
| |
| n->addInput(cond_value); |
| auto* true_block = n->addBlock(); |
| auto* false_block = n->addBlock(); |
| |
| |
| auto emit_if_expr = [this](Block* b, const Expr& expr) { |
| pushFrame(b); |
| WithInsertPoint guard(b); |
| Value* out_val = emitExpr(expr); |
| b->registerOutput(out_val); |
| popFrame(); |
| }; |
| |
| emit_if_expr(true_block, expr.true_expr()); |
| emit_if_expr(false_block, expr.false_expr()); |
| |
| auto true_type = unshapedType(true_block->outputs().at(0)->type()); |
| auto false_type = unshapedType(false_block->outputs().at(0)->type()); |
| if (*true_type != *false_type) { |
| throw ErrorReport(expr) |
| << "if-expression's true branch has type " << true_type->str() |
| << " but false branch has type " << false_type->str(); |
| } |
| |
| // Add op outputs |
| auto expr_value = n->addOutput()->setType(true_type); // Resulting value |
| |
| return expr_value; |
| } |
| |
| Value* emitCond(Expr cond) { |
| Value* v = emitExpr(cond, identity); |
| if(v->type()->isSubtypeOf(*DynamicType::get())) { |
| v = tensorToNum(cond.range(), v, IntType::get()); |
| } |
| if(!v->type()->isSubtypeOf(*IntType::get())) { |
| throw ErrorReport(cond) << "expected a tensor or integer expression for condition but found " << v->type()->str(); |
| } |
| return v; |
| } |
| |
| void emitIf(const If& stmt) { |
| Value* cond_value = emitCond(stmt.cond()); |
| |
| Node* n = graph->insertNode(create(prim::If, stmt.range(), 0)); |
| n->addInput(cond_value); |
| auto* true_block = n->addBlock(); |
| auto* false_block = n->addBlock(); |
| |
| // Emit both blocks once to get the union of all mutated values |
| auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch()); |
| auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch()); |
| |
| // In python, every variable assigned in an if statement escapes |
| // the scope of the if statement (all variables are scoped to the function). |
| // Script is a subset of python: we consider variables to be in scope |
| // as long as there is a definition of the variable along all paths |
| // through the if statemnent |
| // ---- |
| // if ...: |
| // a = |
| // else: |
| // ... |
| // ... = a # error, a is not defined along all paths |
| // ---- |
| // if ...: |
| // a = |
| // else: |
| // a = |
| // ... = a # OK, a is defined along all paths |
| // ---- |
| // a = ... |
| // if ...: |
| // a = |
| // ... = a # OK, a is defined along all paths |
| |
| |
| //ordered set, because we want deterministic graph output |
| std::set<std::string> mutated_variables; |
| |
| for(auto & v : save_true->definedVariables()) { |
| if(save_false->findInAnyFrame(v)) { |
| mutated_variables.insert(v); |
| } |
| } |
| for(auto & v : save_false->definedVariables()) { |
| if(save_true->findInAnyFrame(v)) { |
| mutated_variables.insert(v); |
| } |
| } |
| |
| // Register outputs in each block |
| for (const auto& x : mutated_variables) { |
| auto tv = save_true->getVar(x, stmt.range()); |
| true_block->registerOutput(tv); |
| auto fv = save_false->getVar(x, stmt.range()); |
| false_block->registerOutput(fv); |
| environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(tv->type())); |
| } |
| |
| } |
| |
| // *********************** Loop Operators ************************************ |
| // Emits a loop operators conforming to the semantics specified at |
| // https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop |
| // TODO: implement scan_outputs |
| |
| // the format of the Loop instruction is: |
| // loop_carried_outputs* = Loop(max_trip_count, start_condition, |
| // loop_carried_inputs*) |
| // block0(loop_counter, loop_carried_block*) { |
| // <body> |
| // -> (continue_condition, |
| // loop_carried_block_outputs*) |
| // } |
| // all loop_carried_... lists are the same length and represent the value of |
| // loop-carried variables whose definitions are updated as the loop executes |
| // in a way that ensure single static assignment. |
| |
| |
| void emitLoopCommon( |
| SourceRange range, |
| at::optional<Expr> max_trip_count, |
| at::optional<Expr> cond, |
| const List<Stmt>& body, |
| at::optional<Ident> itr_ident) { |
| Node* n = graph->insertNode(create(prim::Loop, range, 0)); |
| Value *max_trip_count_val, *cond_val; |
| { |
| WithInsertPoint guard(n); |
| if (max_trip_count) { |
| max_trip_count_val = emitExpr(max_trip_count.value(), ensureInt); |
| } else { |
| max_trip_count_val = |
| insertConstant(*graph, INT_MAX, range); |
| } |
| if (cond) { |
| cond_val = emitCond(cond.value()); |
| } else { |
| cond_val = insertConstant(*graph, true, range); |
| } |
| } |
| n->addInput(max_trip_count_val); |
| n->addInput(cond_val); |
| auto* body_block = n->addBlock(); |
| Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num |
| |
| { |
| pushFrame(body_block); |
| if (itr_ident) { |
| environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count); |
| } |
| WithInsertPoint guard(body_block); |
| emitStatements(body); |
| |
| // Also emit the conditional |
| if (cond) { |
| Value* body_cond_value = emitCond(cond.value()); |
| body_block->registerOutput(body_cond_value); |
| } else { |
| Value* cond_value_dummy = insertConstant(*graph, true, range); |
| body_block->registerOutput(cond_value_dummy); |
| } |
| |
| auto body_frame = popFrame(); |
| auto outer_frame = environment_stack; |
| |
| // Add block outputs to correspond to each captured input |
| // some of these will be removed. |
| for (const auto& x : body_frame->captured_inputs) { |
| auto fv = body_frame->getValueInThisFrame(range, x); |
| body_block->registerOutput(fv); |
| } |
| |
| // Remove inputs for values that did not mutate within the |
| // block |
| body_frame->deleteExtraInputs(range); |
| |
| // register node inputs/outputs for the true loop carried deps, |
| for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) { |
| auto x = body_frame->captured_inputs[i]; |
| n->addInput(outer_frame->getVar(x, range)); |
| // body_block->inputs(): loop_counter, lcd0, lcd1, ... |
| // captured_inputs: lcd0, lcd1, ... |
| auto typ = body_block->inputs()[i + 1]->type(); |
| outer_frame->setVar(range, x, n->addOutput()->setType(typ)); |
| } |
| |
| } |
| } |
| |
| void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) { |
| // TODO: start, stop, step loop |
| if (args.size() != 1) { |
| throw ErrorReport(range) |
| << "range() expects 1 argument but got " << args.size(); |
| } |
| emitLoopCommon(range, {args[0]}, {}, body, target); |
| } |
| |
| void emitFor(const For& stmt) { |
| // For now, we only support range loops. e.g. for i in range(3): ... |
| auto targets = stmt.targets(); |
| auto itrs = stmt.itrs(); |
| auto body = stmt.body(); |
| |
| if (stmt.itrs().size() != 1) { |
| throw ErrorReport(stmt) |
| << "List of iterables is not supported currently."; |
| } |
| if (targets.size() != 1) { |
| throw ErrorReport(stmt) << "Iteration variable unpacking is not supported"; |
| } |
| |
| if (targets[0].kind() != TK_VAR) { |
| throw ErrorReport(targets[0]) << "Starred unpacking is currently not" |
| << " supported for for loops."; |
| } |
| auto target = Var(targets[0]).name(); |
| |
| // match range(<expr>) style loops |
| // itrs must consist of a single Apply node |
| if (itrs[0].kind() == TK_APPLY) { |
| Apply range_iterator = Apply(itrs[0]); |
| if (range_iterator.callee().kind() == TK_VAR) { |
| Var var = Var(range_iterator.callee()); |
| if (var.name().name() == "range") { |
| return emitForRange(stmt.range(), target, range_iterator.inputs(), body); |
| } |
| } |
| } |
| |
| // it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be |
| // unrolled |
| auto sv = emitSugaredExpr(itrs[0], 1); |
| auto instances = sv->asTuple(stmt.range(), method); |
| const std::string& target_name = target.name(); |
| pushFrame(environment_stack->block()); |
| for(auto inst : instances) { |
| environment_stack->setSugaredVar(itrs[0].range(), target_name, inst); |
| emitStatements(body); |
| } |
| |
| for (const auto & n : environment_stack->definedVariables()) { |
| if (environment_stack->findInParentFrame(n)) { |
| environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range())); |
| } |
| } |
| popFrame(); |
| } |
| |
| void emitWhile(const While& stmt) { |
| auto cond = stmt.cond(); |
| emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {}); |
| } |
| |
| // Validate that the `lhs` Expr's in an assignment statement are valid. That |
| // is: |
| // |
| // 1) All lhs Expr's are either Var or Starred nodes |
| // 2) There is at most one Starred node in the lhs Expr |
| // 3) A Starred node can only appear when there is another non-Starred lhs Expr |
| // Concretely this means that `*abc = func()` is illegal. Unpacking all |
| // outputs into a tuple is covered by `abc = func()`. |
| bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) { |
| size_t num_normal_assign = 0; |
| size_t num_starred = 0; |
| for (const auto& assignee : lhs) { |
| if (assignee.kind() == TK_VAR) { |
| num_normal_assign++; |
| } else if (assignee.kind() == TK_STARRED) { |
| num_starred++; |
| } else { |
| throw ErrorReport(assignee) |
| << "lhs of assignment must be a variable or starred expression."; |
| } |
| } |
| |
| if (num_starred > 1) { |
| throw ErrorReport(r) |
| << "Only one starred expression is allowed on the lhs."; |
| } |
| |
| if (num_starred > 0 && num_normal_assign == 0) { |
| throw ErrorReport(r) << "A Starred expression may only appear on the " |
| << "lhs within the presence of another non-starred" |
| << " expression."; |
| } |
| |
| return num_starred; |
| } |
| |
| void emitAssignment(const Assign& stmt) { |
| bool starred_unpack = calcNumStarredUnpack(stmt.lhs(), stmt.range()); |
| if (stmt.reduction() != '=') { |
| if (stmt.lhs().size() != 1) { |
| throw ErrorReport(stmt) |
| << "reductions are only allowed when there is a single variable " |
| << "on the left-hand side."; |
| } |
| Ident lhs = Var(stmt.lhs()[0]).name(); |
| Expr expr = BinOp::create(stmt.range(), stmt.reduction(), |
| Var::create(lhs.range(), lhs), stmt.rhs()); |
| environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr)); |
| return; |
| } |
| |
| // See [N_BINDERS] |
| size_t n_binders = stmt.lhs().size(); |
| if(starred_unpack) |
| n_binders--; |
| |
| auto output = emitSugaredExpr(stmt.rhs(), n_binders); |
| |
| if(stmt.lhs().size() == 1) { |
| JIT_ASSERT(!starred_unpack); |
| auto v = Var(stmt.lhs()[0]); |
| environment_stack->setSugaredVar(v.range(), v.name().name(), output); |
| return; |
| } |
| |
| auto outputs = output->asTuple(stmt.rhs().range(), method); |
| if(outputs.size() < n_binders) { |
| throw ErrorReport(stmt) |
| << "need " << (starred_unpack ? "at least " : "") |
| << n_binders << " values to unpack but found only " |
| << outputs.size(); |
| } |
| if(outputs.size() > n_binders && !starred_unpack) { |
| throw ErrorReport(stmt) |
| << "too many values to unpack, need " << n_binders << " but found " |
| << outputs.size(); |
| } |
| int i = 0; |
| for (auto assignee : stmt.lhs()) { |
| if (assignee.kind() == TK_VAR) { |
| environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i)); |
| i++; |
| } else if (assignee.kind() == TK_STARRED) { |
| auto var = Starred(assignee).expr(); |
| if (var.kind() != TK_VAR) { |
| throw ErrorReport(var) << "Cannot pack a tuple into a non-variable."; |
| } |
| size_t n_matched = outputs.size() - n_binders; |
| ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs; |
| auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) { |
| return v->asValue(assignee.range(), method); |
| }); |
| auto tup = graph->insertNode(graph->createTuple(values))->output(); |
| environment_stack->setVar( |
| var.range(), Var(var).name().name(), tup); |
| i += n_matched; |
| } |
| } |
| } |
| |
| NodeKind getNodeKind(int kind, int ninputs) { |
| switch (kind) { |
| case '+': |
| return aten::add; |
| case '-': |
| return aten::sub; |
| case TK_UNARY_MINUS: |
| return aten::neg; |
| case '*': |
| return aten::mul; |
| case TK_POW: |
| return aten::pow; |
| case '@': |
| return aten::matmul; |
| case TK_STARRED: |
| return prim::Starred; |
| case '/': |
| return aten::div; |
| case TK_NE: |
| return aten::ne; |
| case TK_EQ: |
| return aten::eq; |
| case '<': |
| return aten::lt; |
| case '>': |
| return aten::gt; |
| case TK_LE: |
| return aten::le; |
| case TK_GE: |
| return aten::ge; |
| case TK_AND: |
| return aten::__and__; |
| case TK_OR: |
| return aten::__or__; |
| case TK_NOT: |
| return aten::__not__; |
| default: |
| throw std::runtime_error("unknown kind " + std::to_string(kind)); |
| } |
| } |
| |
| |
| |
| std::vector<NamedValue> getNamedValues( |
| TreeList trees, |
| bool maybe_unpack=false, |
| std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) { |
| std::vector<NamedValue> values; |
| size_t next_arg = 0; |
| for (const auto& tree : trees) { |
| if(maybe_unpack && tree->kind() == TK_STARRED) { |
| auto starred = Starred(tree); |
| auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method); |
| for(auto entry : entries) { |
| values.push_back(NamedValue( |
| tree->range(), |
| next_arg++, |
| post_process( |
| starred.range(), entry->asValue(starred.range(), method)))); |
| } |
| } else { |
| values.push_back(NamedValue( |
| tree->range(), next_arg++, emitExpr(Expr(tree), post_process))); |
| } |
| } |
| return values; |
| } |
| std::vector<NamedValue> getNamedValues( |
| List<Expr> trees, |
| bool maybe_unpack=false, |
| std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) { |
| return getNamedValues(trees.tree()->trees(), maybe_unpack, post_process); |
| } |
| |
| std::vector<Value*> getValues( |
| TreeList trees, |
| bool maybe_unpack=false, |
| std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) { |
| return toValues(getNamedValues(trees, maybe_unpack, post_process)); |
| } |
| std::vector<Value*> getValues( |
| List<Expr> trees, |
| bool maybe_unpack=false, |
| std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) { |
| return getValues(trees.tree()->trees(), maybe_unpack, post_process); |
| } |
| |
| // special rules apply when we directly call foo(a,b) when foo is an ident |
| std::shared_ptr<SugaredValue> emitApplyIdent(Ident ident, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) { |
| auto it = function_table.find(ident.name()); |
| if (it != function_table.end()) { |
| return packOutputs(*graph, method.emit_call_to(ident.range(), it->second, inputs, attributes)); |
| } |
| if(auto result = emitBuiltinCall(ident.range(), method, ident.name(), inputs, attributes, false)) { |
| return result; |
| } |
| // it wasn't known built in, so treat it like standard apply |
| return emitApplyExpr(Var::create(ident.range(), ident), inputs, attributes, n_binders); |
| } |
| |
| std::shared_ptr<SugaredValue> emitApplyExpr(Expr callee, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) { |
| // otherwise we evaluate the callee and then desugar it |
| auto sv = emitSugaredExpr(callee, 1); |
| return sv->call(callee.range(), method, inputs, attributes, n_binders); |
| } |
| |
| Value* emitExpr(Expr tree, std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) { |
| return post_process(tree.range(), emitSugaredExpr(tree, 1)->asValue(tree.range(), method)); |
| } |
| |
| NodeKind reverseComparision(NodeKind kind) { |
| if (kind == aten::lt) { |
| return aten::gt; |
| } else if (kind == aten::le) { |
| return aten::ge; |
| } else if (kind == aten::gt) { |
| return aten::lt; |
| } else if (kind == aten::ge) { |
| return aten::le; |
| } |
| throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug"); |
| } |
| |
| // any expression that can produce a SugaredValue is handled here |
| // expressions that only return a single Value* are handled in emitSimpleExpr |
| std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders) { |
| switch(tree.kind()) { |
| case TK_VAR: |
| return environment_stack->getSugaredVar(Var(tree).name()); |
| case '.': { |
| auto select = Select(tree); |
| auto sv = emitSugaredExpr(select.value(), 1); |
| return sv->attr(select.range(), method, select.selector().name()); |
| } |
| case TK_APPLY: { |
| auto apply = Apply(tree); |
| auto inputs = getNamedValues(apply.inputs(), true, identity); |
| auto attributes = fmap(apply.attributes(), [&](const Attribute& attr) { |
| return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value(), identity)); |
| }); |
| // the apply is directly an identifier 'foo' |
| if(apply.callee().kind() == TK_VAR) { |
| return emitApplyIdent(Var(apply.callee()).name(), inputs, attributes, n_binders); |
| } |
| return emitApplyExpr(apply.callee(), inputs, attributes, n_binders); |
| } break; |
| default: |
| return std::make_shared<SimpleValue>(emitSimpleExpr(tree)); |
| } |
| } |
| |
| Value* emitSimpleExpr( |
| const TreeRef& tree) { |
| switch (tree->kind()) { |
| case '@': |
| case TK_POW: |
| case TK_AND: |
| case TK_OR: |
| case TK_NOT: |
| case TK_NE: |
| case TK_EQ: |
| case '<': |
| case '>': |
| case TK_LE: |
| case TK_GE: |
| case '*': |
| case '/': |
| case '+': |
| case '-': |
| case TK_UNARY_MINUS: { |
| const auto& inputs = tree->trees(); |
| auto kind = getNodeKind(tree->kind(), inputs.size()); |
| auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false, identity); |
| return emitBuiltinCall( |
| tree->range(), |
| method, |
| kind.toUnqualString(), |
| named_values, |
| {}, |
| /*required=*/true) |
| ->asValue(tree->range(), method); |
| } |
| case TK_STARRED: { |
| throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report."; |
| } |
| case TK_CONST: { |
| return emitConst(Const(tree)); |
| } break; |
| case TK_TRUE: { |
| return insertConstant(*graph, true, tree->range()); |
| } break; |
| case TK_FALSE: { |
| return insertConstant(*graph, false, tree->range()); |
| } break; |
| case TK_SLICE: { |
| const auto slice = Slice(tree); |
| return emitSlice( |
| slice.range(), |
| {slice.value(), slice.startOr(0), slice.endOr(-1)}); |
| } break; |
| case TK_GATHER: { |
| const auto gather = Gather(tree); |
| return emitGather( |
| gather.range(), {gather.value(), gather.indices()}); |
| } break; |
| case TK_IF_EXPR: { |
| return emitTernaryIf(TernaryIf(tree)); |
| } break; |
| case TK_LIST_LITERAL: { |
| auto ll = ListLiteral(tree); |
| auto values = getValues(ll.inputs(), /*maybe_unpack=*/true, identity); |
| return graph->insertNode(graph->createTuple(values))->output(); |
| } break; |
| default: |
| throw ErrorReport(tree) << "NYI: " << tree; |
| break; |
| } |
| } |
| |
| Value* emitConst(const Const& c) { |
| if (c.isFloatingPoint()) |
| return insertConstant(*graph, c.asFloatingPoint(), c.range()); |
| else |
| return insertConstant(*graph, c.asIntegral(), c.range()); |
| } |
| |
| // Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin, |
| // end). |
| Value* emitSlice( |
| const SourceRange& loc, |
| TreeList&& inputs) { |
| const auto applyInputs = |
| Compound::create(TK_LIST, loc, std::move(inputs)); |
| const auto input_values = getNamedValues(applyInputs->trees(), |
| /*maybe_unpack*/false, |
| identity); |
| NamedValue tensor = input_values[0]; |
| NamedValue begin = input_values[1]; |
| NamedValue end = input_values[2]; |
| NamedValue dim = NamedValue(loc, "dim", |
| insertConstant(*graph, 0, loc)); |
| NamedValue step = NamedValue(loc, "step", |
| insertConstant(*graph, 1, loc)); |
| |
| return emitBuiltinCall( |
| loc, method, "slice", {tensor, dim, begin, end, step}, {}, true) |
| ->asValue(loc, method); |
| } |
| |
| // Desugars gather syntactic sugar tensor[idx] -> tensor.select(idx). |
| Value* emitGather( |
| const SourceRange& loc, |
| TreeList&& inputs) { |
| const auto applyInputs = |
| Compound::create(TK_LIST, loc, std::move(inputs)); |
| auto input_values = getNamedValues(applyInputs->trees(), |
| /*maybe_unpack*/false, |
| identity); |
| NamedValue tensor = input_values[0]; |
| NamedValue dim = NamedValue( |
| loc, |
| "dim", |
| insertConstant(*graph, 0, loc)); |
| NamedValue idx = input_values[1]; |
| |
| return emitBuiltinCall(loc, method, "select", {tensor, dim, idx}, {}, true) |
| ->asValue(loc, method); |
| } |
| }; |
| |
| // support syntax sugar for x.foo(y, z) by allowing x.foo to return a |
| // callable value that will resolve to foo(x, y, z) when called. |
| std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) { |
| return std::make_shared<BuiltinFunction>(field, NamedValue(loc, "self", value)); |
| } |
| |
| std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) { |
| std::unordered_map<Value*, Value*> value_map; |
| auto value_map_func = [&](Value* v) { return value_map.at(v); }; |
| JIT_ASSERT(callee.inputs().size() == inputs.size()); |
| for (size_t i = 0; i < inputs.size(); ++i) { |
| value_map[callee.inputs()[i]] = inputs[i]; |
| } |
| for (auto* node : callee.nodes()) { |
| auto* new_node = |
| g.insertNode(g.createClone(node, value_map_func)); |
| for (size_t i = 0; i < node->outputs().size(); ++i) { |
| value_map[node->outputs()[i]] = new_node->outputs()[i]; |
| } |
| } |
| |
| std::vector<Value*> outputs; |
| for (auto* output : callee.outputs()) { |
| outputs.push_back(value_map_func(output)); |
| } |
| return outputs; |
| } |
| |
| void defineMethodsInModule(Module & m, const std::vector<Def>& definitions, const std::vector<Resolver>& resolvers, SugaredValuePtr self) { |
| FunctionTable table; |
| JIT_ASSERT(definitions.size() == resolvers.size()); |
| auto resolver_it = resolvers.begin(); |
| std::vector<Method*> methods; |
| for(Def def : definitions) { |
| const std::string& name = def.name().name(); |
| Resolver resolver = *resolver_it++; |
| auto creator = [def, &table, resolver, self](Method& method) { |
| to_ir(def, table, resolver, self, method); |
| }; |
| Method& method = m.create_method(name, creator); |
| // if self is defined, then these are methods and do not go into the global namespace |
| // otherwise, they get defined together so we add them to the function table |
| // so the methods can see each other |
| if(!self) { |
| auto result = table.emplace(name, method); |
| JIT_ASSERT(result.second); |
| } |
| methods.push_back(&method); |
| } |
| for(Method* method : methods) { |
| method->ensure_defined(); |
| } |
| } |
| |
| void defineMethodsInModule(Module & m, const std::string& source, const Resolver& resolver, SugaredValuePtr self) { |
| Parser p(source); |
| std::vector<Def> definitions; |
| std::vector<Resolver> resolvers; |
| while (p.lexer().cur().kind != TK_EOF) { |
| definitions.push_back(Def(p.parseFunction())); |
| resolvers.push_back(resolver); |
| } |
| defineMethodsInModule(m, definitions, resolvers, self); |
| } |
| |
| std::shared_ptr<Graph> compileFunction(Def def, const Resolver& resolver) { |
| Module m; //note: we don't use 'm' to execute so this setting is unused |
| defineMethodsInModule(m, {def}, {resolver}, nullptr); |
| return m.get_method(def.name().name()).graph(); |
| } |
| |
| std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(SourceRange loc, Method& m) { |
| if(value->type()->kind() == TypeKind::TupleType) { |
| auto outputs = createTupleUnpack(value); |
| return fmap(outputs, [](Value* v) -> std::shared_ptr<SugaredValue> { |
| return std::make_shared<SimpleValue>(v); |
| }); |
| } |
| throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple"; |
| } |
| |
| void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) { |
| if(expected != actual) { |
| throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual; |
| } |
| } |
| |
| } // namespace script |
| } // namespace jit |
| } // namespace torch |