| import torch._C as _C | 
 |  | 
 | TensorProtoDataType = _C._onnx.TensorProtoDataType | 
 | OperatorExportTypes = _C._onnx.OperatorExportTypes | 
 | PYTORCH_ONNX_CAFFE2_BUNDLE = _C._onnx.PYTORCH_ONNX_CAFFE2_BUNDLE | 
 |  | 
 | ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO" | 
 |  | 
 | # TODO: Update these variables when there  | 
 | # is a new ir_version and producer_version | 
 | # and use these values in the exporter | 
 | ir_version = 4 | 
 | producer_name = "pytorch" | 
 | producer_version = "1.1" | 
 |  | 
 |  | 
 | class ExportTypes: | 
 |     PROTOBUF_FILE = 1 | 
 |     ZIP_ARCHIVE = 2 | 
 |     COMPRESSED_ZIP_ARCHIVE = 3 | 
 |     DIRECTORY = 4 | 
 |  | 
 |  | 
 | def _export(*args, **kwargs): | 
 |     from torch.onnx import utils | 
 |     result = utils._export(*args, **kwargs) | 
 |     return result | 
 |  | 
 |  | 
 | def export(*args, **kwargs): | 
 |     from torch.onnx import utils | 
 |     return utils.export(*args, **kwargs) | 
 |  | 
 |  | 
 | def export_to_pretty_string(*args, **kwargs): | 
 |     from torch.onnx import utils | 
 |     return utils.export_to_pretty_string(*args, **kwargs) | 
 |  | 
 |  | 
 | def _export_to_pretty_string(*args, **kwargs): | 
 |     from torch.onnx import utils | 
 |     return utils._export_to_pretty_string(*args, **kwargs) | 
 |  | 
 |  | 
 | def _optimize_trace(trace, operator_export_type): | 
 |     from torch.onnx import utils | 
 |     trace.set_graph(utils._optimize_graph(trace.graph(), operator_export_type)) | 
 |  | 
 |  | 
 | def set_training(*args, **kwargs): | 
 |     from torch.onnx import utils | 
 |     return utils.set_training(*args, **kwargs) | 
 |  | 
 |  | 
 | def _run_symbolic_function(*args, **kwargs): | 
 |     from torch.onnx import utils | 
 |     return utils._run_symbolic_function(*args, **kwargs) | 
 |  | 
 |  | 
 | def _run_symbolic_method(*args, **kwargs): | 
 |     from torch.onnx import utils | 
 |     return utils._run_symbolic_method(*args, **kwargs) | 
 |  | 
 |  | 
 | def is_in_onnx_export(): | 
 |     from torch.onnx import utils | 
 |     return utils.is_in_onnx_export() | 
 |  | 
 |  | 
 | def register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version): | 
 |     from torch.onnx import utils | 
 |     return utils.register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version) |