blob: 556c80d9417454432b3c38c00a8c408918fb8b18 [file] [log] [blame]
#pragma once
#include <unordered_map>
#include "caffe2/core/context.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/scope_guard.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/types.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2.pb.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#define PY_ARRAY_UNIQUE_SYMBOL caffe2_python_ARRAY_API
#include <numpy/arrayobject.h>
// Temporary solution for numpy < 1.7 versions: old macro, no promises.
// You're strongly advised to upgrade to >= 1.7.
#ifndef NPY_ARRAY_C_CONTIGUOUS
#define NPY_ARRAY_C_CONTIGUOUS NPY_C_CONTIGUOUS
#define PyArray_SetBaseObject(arr, x) (PyArray_BASE(arr) = (x))
#endif
namespace caffe2 {
namespace python {
namespace py = pybind11;
// Add methods common to both CPU and GPU mode.
void addGlobalMethods(pybind11::module& m);
// Expose Workspace, Net, Blob
void addObjectMethods(pybind11::module& m);
class BlobFetcherBase {
public:
struct FetchedBlob {
pybind11::object obj;
bool copied;
};
virtual ~BlobFetcherBase();
virtual pybind11::object Fetch(const Blob& blob) = 0;
};
class BlobFeederBase {
public:
virtual ~BlobFeederBase();
virtual void
Feed(const DeviceOption& option, PyArrayObject* array, Blob* blob) = 0;
};
CAFFE_DECLARE_TYPED_REGISTRY(BlobFetcherRegistry, CaffeTypeId, BlobFetcherBase);
#define REGISTER_BLOB_FETCHER(id, ...) \
CAFFE_REGISTER_TYPED_CLASS(BlobFetcherRegistry, id, __VA_ARGS__)
inline unique_ptr<BlobFetcherBase> CreateFetcher(CaffeTypeId id) {
return BlobFetcherRegistry()->Create(id);
}
CAFFE_DECLARE_TYPED_REGISTRY(BlobFeederRegistry, int, BlobFeederBase);
#define REGISTER_BLOB_FEEDER(device_type, ...) \
CAFFE_REGISTER_TYPED_CLASS(BlobFeederRegistry, device_type, __VA_ARGS__)
inline unique_ptr<BlobFeederBase> CreateFeeder(int device_type) {
return BlobFeederRegistry()->Create(device_type);
}
static_assert(
sizeof(int) == sizeof(int32_t),
"We make an assumption that int is always int32 for numpy "
"type mapping.");
int CaffeToNumpyType(const TypeMeta& meta);
const TypeMeta& NumpyTypeToCaffe(int numpy_type);
template <class Context>
class TensorFetcher : public BlobFetcherBase {
public:
pybind11::object Fetch(const Blob& blob) override {
return FetchTensor(blob.Get<Tensor<Context>>(), true).obj;
}
bool NeedsCopy(const TypeMeta& meta) const {
return !std::is_same<Context, CPUContext>::value ||
CaffeToNumpyType(meta) == NPY_OBJECT;
}
FetchedBlob FetchTensor(const Tensor<Context>& tensor, bool force_copy) {
FetchedBlob result;
CAFFE_ENFORCE_GE(tensor.size(), 0, "Trying to fetch unitilized tensor");
const int numpy_type = CaffeToNumpyType(tensor.meta());
CAFFE_ENFORCE(
numpy_type != -1,
"This tensor's data type is not supported: ",
tensor.meta().name(),
".");
std::vector<npy_intp> npy_dims;
for (const auto dim : tensor.dims()) {
npy_dims.push_back(dim);
}
result.copied = force_copy || NeedsCopy(tensor.meta());
void* outPtr;
if (result.copied) {
result.obj = pybind11::object(
PyArray_SimpleNew(tensor.ndim(), npy_dims.data(), numpy_type),
/* borrowed */ false);
outPtr = static_cast<void*>(
PyArray_DATA(reinterpret_cast<PyArrayObject*>(result.obj.ptr())));
} else {
outPtr = const_cast<Tensor<Context>&>(tensor).raw_mutable_data();
result.obj = pybind11::object(
PyArray_SimpleNewFromData(
tensor.ndim(), npy_dims.data(), numpy_type, outPtr),
/* borrowed */ false);
}
if (numpy_type == NPY_OBJECT) {
PyObject** outObj = reinterpret_cast<PyObject**>(outPtr);
auto* str = tensor.template data<std::string>();
for (int i = 0; i < tensor.size(); ++i) {
outObj[i] = PyBytes_FromStringAndSize(str->data(), str->size());
str++;
// cleanup on failure
if (outObj[i] == nullptr) {
for (int j = 0; j < i; ++j) {
Py_DECREF(outObj[j]);
}
CAFFE_THROW("Failed to allocate string for ndarray of strings.");
}
}
return result;
}
if (result.copied) {
Context context;
context.template CopyBytes<Context, CPUContext>(
tensor.nbytes(), tensor.raw_data(), outPtr);
context.FinishDeviceComputation();
}
return result;
}
};
template <class Context>
class TensorFeeder : public BlobFeederBase {
public:
void FeedTensor(
const DeviceOption& option,
PyArrayObject* original_array,
Tensor<Context>* tensor) {
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
auto g = MakeGuard([&]() { Py_XDECREF(array); });
const auto npy_type = PyArray_TYPE(array);
const TypeMeta& meta = NumpyTypeToCaffe(npy_type);
CAFFE_ENFORCE(
meta.id() != 0,
"This numpy data type is not supported: ",
PyArray_TYPE(array),
".");
Context context(option);
context.SwitchToDevice();
// numpy requires long int as its dims.
int ndim = PyArray_NDIM(array);
npy_intp* npy_dims = PyArray_DIMS(array);
std::vector<TIndex> dims;
for (int i = 0; i < ndim; ++i) {
dims.push_back(npy_dims[i]);
}
tensor->Resize(dims);
// Now, copy the data to the tensor.
switch (npy_type) {
case NPY_OBJECT: {
PyObject** input = reinterpret_cast<PyObject**>(PyArray_DATA(array));
auto* outPtr = tensor->template mutable_data<std::string>();
for (int i = 0; i < tensor->size(); ++i) {
char* str;
Py_ssize_t strSize;
CAFFE_ENFORCE(
PyBytes_AsStringAndSize(input[i], &str, &strSize) != -1,
"Unsupported python object type passed into ndarray.");
outPtr[i] = std::string(str, strSize);
}
} break;
default:
context.template CopyBytes<CPUContext, Context>(
tensor->size() * meta.itemsize(),
static_cast<void*>(PyArray_DATA(array)),
tensor->raw_mutable_data(meta));
}
context.FinishDeviceComputation();
}
virtual void
Feed(const DeviceOption& option, PyArrayObject* original_array, Blob* blob) {
FeedTensor(option, original_array, blob->GetMutable<Tensor<Context>>());
}
};
namespace python_detail {
class Func;
}
class PythonOpBase : public Operator<CPUContext> {
public:
PythonOpBase(const OperatorDef& operator_def, Workspace* ws)
: Operator(operator_def, ws), ws_(ws) {}
bool RunOnDevice() override final;
protected:
virtual const python_detail::Func& getFunc() = 0;
Workspace* ws_;
};
class PythonOp final : public PythonOpBase {
public:
using PythonOpBase::PythonOpBase;
protected:
const python_detail::Func& getFunc() override;
};
class PythonGradientOp final : public PythonOpBase {
public:
using PythonOpBase::PythonOpBase;
protected:
const python_detail::Func& getFunc() override;
};
} // namespace python
} // namespace caffe2