blob: b969b56c57892571003d66517bf0ba050d051c06 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
'''
This module provides a python-land multithreaded data input mechanism
for Caffe2 nets.
Basic usage is as follows:
coordinator = data_workers.init_data_input_workers(
net,
["data", "label"],
my_fetch_fun,
batch_size=32,
input_source_name="train"
)
...
coordinator.start()
First argument is the Caffe2 net (or model helper), and second argument
is list of input blobs that are to be fed.
Argument 'input_source_name' is used to distinguish different sources of data,
such as train or test data. This is to ensure the data does not get mixed up,
although two nets would share blobs.
To do the actual data loading, one defines a "fetcher function"
that has call signature
my_fetch_fun(worker_id, batch_size)
This function returns a list of numpy arrays corresponding to the different
input blobs. In the example above, it would return two arrays, one for the
data blob and another for the labels. These arrays can have arbitrary number
of elements (i.e they do not need to match the batch size). The batch size
is provided for the function as a hint only.
For example, fetcher function could download images from a remote service or
load random images from a directory on a file system.
For a dummy example, see the data_workers_test unit test.
Note that for data_parallel_models, init_data_input_workers will be called
for each GPU. Note that the 'coordinator' returned by the function is same
each time.
'''
import Queue
import logging
import threading
import atexit
import numpy as np
import time
from caffe2.python import workspace, core, scope
from caffe2.proto import caffe2_pb2
log = logging.getLogger("data_workers")
log.setLevel(logging.INFO)
LOG_INT_SECS = 1200
def init_data_input_workers(
net,
input_blob_names,
fetch_fun,
batch_size,
num_worker_threads=2,
input_source_name="train",
max_buffered_batches=800,
):
global global_coordinator
device_option = scope.CurrentDeviceScope()
if (device_option is None):
device_option = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CPU)
# Create coordinator object
coordinator = DataInputCoordinator(
net,
input_blob_names,
batch_size,
device_option,
scope.CurrentNameScope(),
input_source_name,
global_coordinator.get_queue(input_source_name, max_buffered_batches)
)
# Launch fetch worker threads
workers = [
threading.Thread(
target=fetcher,
name="data_workers fetcher id {}".format(global_coordinator._fetcher_id_seq + i),
args=[coordinator, global_coordinator._fetcher_id_seq + i, fetch_fun, batch_size, input_blob_names],
) for i in range(num_worker_threads)
]
global_coordinator._fetcher_id_seq += num_worker_threads
workers.append(threading.Thread(
target=enqueuer,
name="Enqueuer {} {}".format(input_source_name, scope.CurrentNameScope()),
args=[coordinator]))
coordinator._workers = workers
global_coordinator.add(coordinator)
return global_coordinator
class DataInputCoordinator(object):
def __init__(self, net, input_blob_names, batch_size,
device_option, namescope, input_source_name, queue):
self._net = net
self._counter = 0
self._input_blob_names = input_blob_names
self._batch_size = batch_size
self._internal_queue = queue
self._queues = []
self._device_option = device_option
self._namescope = namescope
self._active = True
self._started = False
self._workers = []
self._input_source_name = input_source_name
self._create_caffe2_queues_and_ops()
self._inputs = 0
self._prev_seconds = 0
self._last_warning = time.time()
def is_active(self):
return self._active
def _start(self):
if self._started:
return
self._active = True
self._started = True
self._inputs = 0
self._prev_seconds = time.time()
for w in self._workers:
w.daemon = True
w.start()
def _stop(self, reason=None):
self._active = False
if reason is not None:
log.error("Data input failed due to an error: {}".format(reason))
for q in self._queues:
workspace.RunOperatorOnce(
core.CreateOperator("CloseBlobsQueue", [q], [])
)
self._started = False
def _wait_finish(self):
print("Wait for workers to die")
for w in self._workers:
if w != threading.current_thread():
w.join(5.0) # don't wait forever, thread may be blocked in i/o
success = True
for w in self._workers:
if w.isAlive():
print("Worker {} failed to close while waiting".format(w))
success = False
print("All workers terminated: {}".format(success))
return success
def _get(self):
while self.is_active():
try:
return self._internal_queue.get(block=True, timeout=0.5)
except Queue.Empty:
continue
return None
def put(self, chunk):
if len(chunk) == 0:
print("Worker provided zero length input")
return
while self.is_active():
try:
qsize = self._internal_queue.qsize()
if qsize < 2 and (time.time() - self._last_warning) > LOG_INT_SECS:
print("Warning, data loading lagging behind: " +
"name={}".format(qsize, self._input_source_name))
self._last_warning = time.time()
self._counter += 1
self._internal_queue.put(chunk, block=True, timeout=0.5)
self._log_inputs_per_interval(chunk[0].shape[0])
return
except Queue.Full:
log.debug("Queue full: stalling fetchers...")
continue
def _enqueue_batch(self):
'''
This pulls data from the python-side queue and collects them
into batch-sized pieces.
'''
cur_batch = [np.array([]) for d in self._input_blob_names]
# Collect data until we have a full batch size
while cur_batch[0].shape[0] < self._batch_size and self.is_active():
chunk = self._get()
if chunk is None:
continue
for j, chunk_elem in enumerate(chunk):
if cur_batch[j].shape[0] == 0:
cur_batch[j] = chunk_elem.copy()
else:
cur_batch[j] = np.append(cur_batch[j], chunk_elem, axis=0)
# Return data over the batch size back to queue
if cur_batch[0].shape[0] > self._batch_size:
leftover = [c[self._batch_size:] for c in cur_batch]
cur_batch = [c[:self._batch_size] for c in cur_batch]
try:
self._internal_queue.put(leftover, block=False)
except Queue.Full:
pass
assert cur_batch[0].shape[0] == self._batch_size
if self.is_active():
for b, q, c in zip(self._input_blob_names, self._queues, cur_batch):
self._enqueue(b, q, c)
def _enqueue(self, blob_name, queue, data_arr):
'''
Enqueue the correctly sized batch arrays to Caffe2's queue.
'''
scratch_name = self._namescope + blob_name + \
"_scratch_" + self._input_source_name
blob = core.BlobReference(scratch_name)
status = core.BlobReference(scratch_name + "_status")
workspace.FeedBlob(
blob,
data_arr,
device_option=self._device_option
)
op = core.CreateOperator(
"SafeEnqueueBlobs",
[queue, blob],
[blob, status],
device_option=self._device_option
)
workspace.RunOperatorOnce(op)
def _create_caffe2_queues_and_ops(self):
'''
Creates queues on caffe2 side, and respective operators
to pull (dequeue) blobs from the queues.
'''
def create_queue(queue_name, num_blobs, capacity):
workspace.RunOperatorOnce(
core.CreateOperator(
"CreateBlobsQueue",
[], [queue_name],
num_blobs=1,
capacity=capacity))
return core.ScopedBlobReference(queue_name)
for blob_name in self._input_blob_names:
qname = blob_name + "_c2queue" + "_" + self._input_source_name
q = create_queue(qname, num_blobs=1, capacity=4)
self._queues.append(q)
print("Created queue: {}".format(q))
# Add operator to the Caffe2 network to dequeue
self._net.DequeueBlobs(q, blob_name)
def _log_inputs_per_interval(self, inputs):
self._inputs += inputs
current_seconds = time.time()
delta_seconds = current_seconds - self._prev_seconds
if delta_seconds >= LOG_INT_SECS:
print("{}/{}: {} inputs/sec".format(
self._input_source_name,
self._namescope,
int(self._inputs / delta_seconds),
))
print("-- queue: {} batches".format(self._internal_queue.qsize()))
self._inputs = 0
self._prev_seconds = current_seconds
class GlobalCoordinator(object):
def __init__(self):
self._coordinators = []
self._fetcher_id_seq = 0
self._queues = {}
self.register_shutdown_handler()
def add(self, coordinator):
self._coordinators.append(coordinator)
def get_queue(self, queue_name, max_buffered_batches):
assert isinstance(max_buffered_batches, int)
if queue_name not in self._queues:
self._queues[queue_name] = Queue.Queue(maxsize=max_buffered_batches)
return self._queues[queue_name]
def start(self):
for c in self._coordinators:
c._start()
def stop(self):
all_success = True
for c in self._coordinators:
c._stop()
for c in self._coordinators:
success = c._wait_finish()
all_success = all_success and success
self._coordinators = []
return all_success
def register_shutdown_handler(self):
def cleanup():
self.stop()
atexit.register(cleanup)
global_coordinator = GlobalCoordinator()
def fetcher(coordinator, worker_id, fetch_fun, batch_size, input_blob_names):
while coordinator.is_active():
try:
input_data = fetch_fun(worker_id, batch_size)
if input_data is None:
print("Fetcher function returned None")
continue
assert len(input_data) == len(input_blob_names), \
"Expecting data blob for each input"
for d in input_data:
assert isinstance(d, np.ndarray), \
"Fetcher function must return a numpy array"
for d in input_data[1:]:
assert d.shape[0] == input_data[0].shape[0], \
"Each returned input must have equal number of samples"
coordinator.put(input_data)
except Exception as e:
logging.exception("Exception in fetcher", e)
coordinator._stop("Exception in fetcher {}: {}".format(
worker_id, e
))
def enqueuer(coordinator):
while coordinator.is_active():
coordinator._enqueue_batch()