blob: e08d6f2eb2bd9ca1dc75af3ceedf464f0c7a44f2 [file] [log] [blame]
#include "caffe2/operators/elu_op.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <>
bool EluOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto* Y = Output(0);
// Otherwise inplace gradient and Elu dosen't make sense.
CAFFE_ENFORCE_GE(alpha_, 0);
Y->ResizeLike(X);
const auto* Xdata = X.template data<float>();
auto* Ydata = Y->template mutable_data<float>();
ConstEigenVectorArrayMap<float> Xvec(Xdata, X.size());
EigenVectorArrayMap<float> Yvec(Ydata, Y->size());
Yvec = Xvec.cwiseMax(0.f) + (alpha_ * (Xvec.exp() - 1.0f)).cwiseMin(0.f);
return true;
}
template <>
bool EluGradientOp<float, CPUContext>::RunOnDevice() {
auto& Y = Input(0);
auto& dY = Input(1);
auto* dX = Output(0);
DCHECK_GT(Y.size(), 0);
DCHECK_EQ(dY.size(), Y.size());
dX->ResizeLike(Y);
const float* Ydata = Y.data<float>();
const float* dYdata = dY.data<float>();
float* dXdata = dX->mutable_data<float>();
ConstEigenVectorArrayMap<float> Yvec(Ydata, Y.size());
ConstEigenVectorArrayMap<float> dYvec(dYdata, dY.size());
EigenVectorArrayMap<float> dXvec(dXdata, dX->size());
dXvec = (Yvec > 0).select(dYvec, dYvec * (Yvec + alpha_));
return true;
}
REGISTER_CPU_OPERATOR(Elu, EluOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(EluGradient, EluGradientOp<float, CPUContext>);
// Input: X, output: Y
OPERATOR_SCHEMA(Elu)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
This op implements the exponential linear unit (ELU) activation function as described in [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)](https://arxiv.org/abs/1511.07289). The op takes an input tensor $X$ of arbitrary shape, computes the elementwise elu operation, and returns a vector $Y$ of the same shape as output. The alpha parameter may be passed as an argument, but defaults to 1. The elu operation is defined as
$$y=f(x) =\begin{cases}\alpha(e^x-1) & x < 0 \\ x & otherwise\end{cases}$$
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/elu_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/elu_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Elu",
["X"],
["Y"],
alpha=1.1
)
workspace.FeedBlob("X", np.random.randn(3, 3).astype(np.float32))
print("X:\n", workspace.FetchBlob("X"), "\n")
workspace.RunOperatorOnce(op)
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[ 0.35339102 1.1860217 -0.10710736]
[-3.1173866 -0.1889988 -0.20330353]
[ 1.8525308 -0.368949 0.506277 ]]
Y:
[[ 0.35339102 1.1860217 -0.11172786]
[-1.0513 -0.18943374 -0.20236646]
[ 1.8525308 -0.33939326 0.506277 ]]
```
</details>
)DOC")
.Input(0, "X", "1D input tensor of data to be operated on.")
.Output(0, "Y", "1D input tensor, calculated as described above.")
.Arg("alpha", "*(type: float; default: 1.0)* Defines alpha parameter used in calculation.")
.InheritOnnxSchema("Elu");
// Input: Y, dY, output: dX
OPERATOR_SCHEMA(EluGradient)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{1, 0}})
.SetDoc(R"DOC(
EluGradient takes both Y and dY and uses this to update dX according to the
chain rule and derivatives of the rectified linear function.
)DOC");
class GetEluGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{O(0), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Elu, GetEluGradient);
} // namespace caffe2