| import functools |
| import numbers |
| import operator |
| import sys |
| from enum import Enum |
| from functools import partial, reduce |
| from itertools import chain, product |
| from typing import Any, Callable, cast, Iterable, List, Optional, Tuple, Union |
| |
| import torch |
| import torch._prims as prims |
| import torch._prims_common as utils |
| import torch.nn.functional as F |
| from torch import sym_float, sym_int, Tensor |
| from torch._decomp import register_decomposition |
| from torch._higher_order_ops.out_dtype import out_dtype |
| from torch._prims_common import ( |
| IntLike, |
| NumberType, |
| suggest_memory_format, |
| TensorLike, |
| TensorSequenceType, |
| ) |
| from torch._prims_common.wrappers import ( |
| _maybe_convert_to_dtype, |
| _maybe_resize_out, |
| _safe_copy_out, |
| out_wrapper, |
| ) |
| from torch.utils import _pytree as pytree |
| from torch.utils._pytree import tree_map |
| |
| DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined] |
| |
| # None of these functions are publicly accessible; get at them |
| # from torch._decomps |
| __all__: List[str] = [] |
| |
| aten = torch._ops.ops.aten |
| |
| |
| class Reduction(Enum): |
| NONE = 0 |
| MEAN = 1 |
| SUM = 2 |
| |
| |
| # This wraps a decomposition and performs various type promotion logic within it, depending on the strategy provided |
| # We're currently re-using ELEMENTWISE_TYPE_PROMOTION_KIND, although some of the usages are on non-elementwise ops |
| # Will need to validate the non-elementwise uses |
| def type_casts( |
| f: Callable, |
| type_promotion: utils.ELEMENTWISE_TYPE_PROMOTION_KIND, |
| compute_dtype_only: bool = False, |
| ): |
| @functools.wraps(f) |
| def inner(*args, **kwargs): |
| flat_args = [ |
| x for x in pytree.arg_tree_leaves(*args, **kwargs) if isinstance(x, Tensor) |
| ] |
| computation_dtype, result_dtype = utils.elementwise_dtypes( |
| *flat_args, type_promotion_kind=type_promotion |
| ) |
| |
| # TODO: pretty sure this is not quite right |
| def increase_prec(x): |
| if isinstance(x, Tensor): |
| return x.to(computation_dtype) |
| else: |
| return x |
| |
| def decrease_prec(x): |
| if isinstance(x, Tensor): |
| return x.to(result_dtype) |
| else: |
| return x |
| |
| r = f(*tree_map(increase_prec, args), **tree_map(increase_prec, kwargs)) |
| if compute_dtype_only: |
| return r |
| else: |
| return tree_map(decrease_prec, r) |
| |
| return inner |
| |
| |
| compute_only_pw_cast_for_opmath = partial( |
| type_casts, |
| type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, |
| compute_dtype_only=True, |
| ) |
| pw_cast_for_opmath = partial( |
| type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| pw_cast_for_int_to_real = partial( |
| type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT |
| ) |
| |
| |
| # This expands x until x.dim() == dim. Might be useful as an operator |
| def _unsqueeze_to_dim(x: Tensor, dim: int) -> Tensor: |
| for _ in range(dim - x.dim()): |
| x = x.unsqueeze(-1) |
| return x |
| |
| |
| @register_decomposition(aten.tanh_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def tanh_backward(out_grad: Tensor, y: Tensor): |
| return out_grad * (1 - y * y).conj_physical() |
| |
| |
| @register_decomposition(aten.sigmoid_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def sigmoid_backward(out_grad: Tensor, y: Tensor): |
| return out_grad * (y * (1 - y)).conj_physical() |
| |
| |
| @register_decomposition(aten.softplus_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def softplus_backward(out_grad: Tensor, x: Tensor, beta: float, threshold: float): |
| z = (x * beta).exp() |
| return torch.where((x * beta) > threshold, out_grad, out_grad * z / (z + 1.0)) |
| |
| |
| @register_decomposition(aten.elu_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def elu_backward( |
| grad_output: Tensor, |
| alpha: float, |
| scale: float, |
| input_scale: float, |
| is_result: bool, |
| self_or_result: Tensor, |
| ): |
| negcoef = alpha * scale |
| poscoef = scale |
| negiptcoef = input_scale |
| if is_result: |
| return torch.where( |
| self_or_result <= 0, |
| grad_output * negiptcoef * (self_or_result + negcoef), |
| grad_output * poscoef, |
| ) |
| else: |
| return torch.where( |
| self_or_result <= 0, |
| grad_output * negiptcoef * negcoef * torch.exp(self_or_result * negiptcoef), |
| grad_output * poscoef, |
| ) |
| |
| |
| @register_decomposition([aten.fill.Scalar]) |
| def fill_scalar(self, value): |
| return torch.full_like(self, value) |
| |
| |
| @register_decomposition([aten.fill.Tensor]) |
| def fill_tensor(self, value: Tensor): |
| torch._check( |
| value.dim() == 0, |
| lambda: f"fill only supports 0-dimension value tensor but got tensor with {value.dim()} dimensions", |
| ) |
| return aten.copy(self, value) |
| |
| |
| @register_decomposition(aten.hardsigmoid) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def hardsigmoid(self: Tensor) -> Tensor: |
| return torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6 |
| |
| |
| @register_decomposition(aten.hardsigmoid_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def hardsigmoid_backward(grad_output: Tensor, self: Tensor): |
| return torch.where( |
| (self > -3.0) & (self < 3.0), |
| grad_output * (1.0 / 6.0), |
| 0.0, |
| ) |
| |
| |
| @register_decomposition(aten.hardtanh_backward) |
| @out_wrapper("grad_input") |
| def hardtanh_backward( |
| grad_output: Tensor, self: Tensor, min_val: float, max_val: float |
| ): |
| return torch.where((self <= min_val) | (self >= max_val), 0.0, grad_output) |
| |
| |
| @register_decomposition(aten.hardswish) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def hardswish(self: Tensor) -> Tensor: |
| return self * torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6 |
| |
| |
| @register_decomposition(aten.hardswish_backward) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def hardswish_backward(grad_output: Tensor, self: Tensor) -> Tensor: |
| return torch.where( |
| self < -3, |
| 0.0, |
| torch.where(self <= 3, grad_output * ((self / 3) + 0.5), grad_output), |
| ) |
| |
| |
| @register_decomposition(aten.threshold_backward) |
| @out_wrapper("grad_input") |
| def threshold_backward(grad_output: Tensor, self: Tensor, threshold: float): |
| return torch.where(self <= threshold, 0, grad_output) |
| |
| |
| @register_decomposition(aten.leaky_relu_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def leaky_relu_backward( |
| grad_output: Tensor, self: Tensor, negative_slope: float, self_is_result: bool |
| ): |
| return torch.where(self > 0, grad_output, grad_output * negative_slope) |
| |
| |
| @register_decomposition(aten.gelu_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def gelu_backward(grad: Tensor, self: Tensor, approximate: str = "none"): |
| M_SQRT2 = 1.41421356237309504880 |
| M_SQRT1_2 = 0.70710678118654752440 |
| M_2_SQRTPI = 1.12837916709551257390 |
| if approximate == "tanh": |
| kBeta = M_SQRT2 * M_2_SQRTPI * 0.5 |
| kKappa = 0.044715 |
| x_sq = self * self |
| x_cube = x_sq * self |
| inner = kBeta * (self + kKappa * x_cube) |
| tanh_inner = torch.tanh(inner) |
| |
| left = 0.5 * self |
| right = 1 + tanh_inner |
| |
| left_derivative = 0.5 * right |
| |
| tanh_derivative = 1 - tanh_inner * tanh_inner |
| inner_derivative = kBeta * (1 + 3 * kKappa * x_sq) |
| right_derivative = left * tanh_derivative * inner_derivative |
| |
| return grad * (left_derivative + right_derivative) |
| else: |
| kAlpha = M_SQRT1_2 |
| kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5 |
| cdf = 0.5 * (1 + torch.erf(self * kAlpha)) |
| pdf = kBeta * torch.exp(self * self * -0.5) |
| return grad * (cdf + self * pdf) |
| |
| |
| @register_decomposition(aten.mish_backward) |
| @pw_cast_for_opmath |
| def mish_backward(grad_output: Tensor, input: Tensor): |
| input_tanh_softplus = torch.tanh(F.softplus(input)) |
| input_sigmoid = torch.sigmoid(input) |
| out = input * input_sigmoid * (1 - input_tanh_softplus * input_tanh_softplus) |
| return grad_output * (input_tanh_softplus + out) |
| |
| |
| @register_decomposition(aten.silu) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def silu(self: Tensor) -> Tensor: |
| return self * torch.sigmoid(self) |
| |
| |
| @register_decomposition(aten.silu_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def silu_backward(grad_output: Tensor, self: Tensor) -> Tensor: |
| sigmoid = 1 / (1 + torch.exp(-self)) |
| return grad_output * sigmoid * (1 + self * (1 - sigmoid)) |
| |
| |
| @register_decomposition(aten._prelu_kernel) |
| def _prelu_kernel(self: Tensor, weight: Tensor) -> Tensor: |
| return torch.where(self > 0, self, weight * self) |
| |
| |
| @register_decomposition(aten._prelu_kernel_backward) |
| def _prelu_kernel_backward( |
| grad_output: Tensor, |
| self: Tensor, |
| weight: Tensor, |
| ) -> Tuple[Tensor, Tensor]: |
| input_grad = torch.where(self > 0, grad_output, weight * grad_output) |
| weight_grad = torch.where(self > 0, 0.0, self * grad_output) |
| return (input_grad, weight_grad) |
| |
| |
| @register_decomposition(aten.rrelu_with_noise) |
| @aten.rrelu_with_noise.default.py_impl(DispatchKey.AutogradCUDA) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def rrelu_with_noise( |
| self: Tensor, |
| noise: Tensor, |
| lower: float = 0.125, |
| upper: float = 0.3333333333333333, |
| training: bool = False, |
| generator: Optional[torch.Generator] = None, |
| ) -> Tensor: |
| assert generator is None |
| if training: |
| not_positive = self <= 0 |
| r = aten.uniform(self, lower, upper) |
| output = torch.where(not_positive, self * r, self) |
| noise.copy_(torch.where(not_positive, r, 1)) |
| return output |
| else: |
| negative_slope = (lower + upper) / 2 |
| return aten.leaky_relu(self, negative_slope) |
| |
| |
| @register_decomposition(aten.rrelu_with_noise_) |
| @aten.rrelu_with_noise_.default.py_impl(DispatchKey.AutogradCUDA) |
| @pw_cast_for_opmath |
| def rrelu_with_noise_( |
| self: Tensor, |
| noise: Tensor, |
| lower: float, |
| upper: float, |
| training: bool = False, |
| generator: Optional[torch.Generator] = None, |
| ) -> Tensor: |
| return self.copy_(rrelu_with_noise(self, noise, lower, upper, training, generator)) |
| |
| |
| @register_decomposition(aten.rrelu_with_noise_backward) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def rrelu_with_noise_backward( |
| grad_output: Tensor, |
| self: Tensor, |
| noise: Tensor, |
| lower: float, |
| upper: float, |
| training: bool, |
| self_is_result: bool, |
| ) -> Tensor: |
| if training and upper - lower > 1e-6: |
| return grad_output.mul(noise) |
| else: |
| negative_slope = (lower + upper) / 2 |
| return aten.leaky_relu_backward( |
| grad_output, self, negative_slope, self_is_result |
| ) |
| |
| |
| @register_decomposition(aten.log_sigmoid_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def log_sigmoid_backward(grad_output: Tensor, self: Tensor, buffer: Tensor) -> Tensor: |
| in_negative = self < 0 |
| max_deriv = torch.where(in_negative, 1, 0) |
| sign = torch.where(in_negative, 1, -1) |
| z = torch.exp(-torch.abs(self)) |
| return grad_output * (max_deriv - sign * (z / (1 + z))) |
| # CPU has a special formula that uses buffer, but disabled for convenience sake |
| # return (max_deriv - sign * (buffer / (1 + buffer))) * grad_output |
| |
| |
| def apply_loss_reduction(loss: Tensor, reduction: int): |
| if reduction == Reduction.MEAN.value: |
| return torch.mean(loss) |
| elif reduction == Reduction.SUM.value: |
| return torch.sum(loss) |
| else: |
| return loss |
| |
| |
| def to_real_dtype(dtype: torch.dtype): |
| if dtype == torch.complex32: |
| return torch.float16 |
| elif dtype == torch.complex64: |
| return torch.float32 |
| elif dtype == torch.complex128: |
| return torch.float64 |
| |
| |
| # TODO: None of these loss castings are quite correct, see |
| # https://github.com/pytorch/pytorch/issues/76870. Also, the ATen kernels |
| # perform the pointwise portion in opmath, but don't maintain it between the |
| # pointwise portion and the reduction |
| |
| |
| @register_decomposition(aten.mse_loss) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def mse_loss( |
| self: Tensor, target: Tensor, reduction: int = Reduction.MEAN.value |
| ) -> Tensor: |
| loss = (self - target) ** 2 |
| return apply_loss_reduction(loss, reduction) |
| |
| |
| @register_decomposition(aten.mse_loss_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def mse_loss_backward( |
| grad_output: Tensor, input: Tensor, target: Tensor, reduction: int |
| ): |
| norm = 2.0 / input.numel() if reduction == Reduction.MEAN.value else 2.0 |
| return norm * (input - target) * grad_output |
| |
| |
| @register_decomposition(aten.smooth_l1_loss) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def smooth_l1_loss( |
| self: Tensor, |
| target: Tensor, |
| reduction: int = Reduction.MEAN.value, |
| beta: float = 1.0, |
| ): |
| loss = (self - target).abs() |
| loss = torch.where(loss < beta, 0.5 * loss**2 / beta, loss - 0.5 * beta) |
| return apply_loss_reduction(loss, reduction) |
| |
| |
| @register_decomposition(aten.smooth_l1_loss_backward.default) |
| @pw_cast_for_opmath |
| def smooth_l1_loss_backward( |
| grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, beta: float |
| ): |
| norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0 |
| x = self - target |
| abs_x = torch.abs(x) |
| norm_grad = norm * grad_output |
| return torch.where( |
| abs_x < beta, |
| norm_grad * x / beta, |
| norm_grad * torch.sign(x), |
| ) |
| |
| |
| @register_decomposition(aten.smooth_l1_loss_backward.grad_input) |
| @pw_cast_for_opmath |
| def smooth_l1_loss_backward_out( |
| grad_output: Tensor, |
| self: Tensor, |
| target: Tensor, |
| reduction: int, |
| beta: float, |
| grad_input: Tensor, |
| ): |
| result = smooth_l1_loss_backward(grad_output, self, target, reduction, beta) |
| _maybe_resize_out(grad_input, result.shape) |
| return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True) |
| |
| |
| @register_decomposition(aten.huber_loss_backward.default) |
| @pw_cast_for_opmath |
| def huber_loss_backward( |
| grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, delta: float |
| ): |
| norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0 |
| x = self - target |
| return torch.where( |
| x < -delta, |
| -norm * grad_output * delta, |
| torch.where(x > delta, norm * grad_output * delta, norm * x * grad_output), |
| ) |
| |
| |
| # We cannot use @out_wrapper() here, because the output tensor is not named 'out', it's 'grad_input' |
| @register_decomposition(aten.huber_loss_backward.out) |
| @pw_cast_for_opmath |
| def huber_loss_backward_out( |
| grad_output: Tensor, |
| self: Tensor, |
| target: Tensor, |
| reduction: int, |
| delta: float, |
| grad_input: Tensor, |
| ): |
| result = huber_loss_backward(grad_output, self, target, reduction, delta) |
| _maybe_resize_out(grad_input, result.shape) |
| return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True) |
| |
| |
| def _nll_loss_backward( |
| grad_output: Tensor, |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor], |
| reduction: int, |
| ignore_index: int, |
| total_weight: Tensor, |
| ) -> Tensor: |
| channel_dim = 0 if self.dim() < 2 else 1 |
| if reduction == Reduction.MEAN.value: |
| grad_output = grad_output / total_weight |
| |
| target = target.unsqueeze(channel_dim) |
| safe_target = torch.where(target != ignore_index, target, 0) |
| grad_input = torch.zeros_like(self) |
| grad_input = torch.scatter(grad_input, channel_dim, safe_target, -1.0) |
| |
| if grad_input.dim() > grad_output.dim() > 0: |
| grad_output = grad_output.unsqueeze(channel_dim) |
| |
| if weight is not None: |
| new_shape = [1 for _ in range(self.dim())] |
| new_shape[channel_dim] = weight.shape[0] |
| weight = weight.reshape(new_shape) |
| grad_output = grad_output * weight |
| |
| grad_output = torch.where(target != ignore_index, grad_output, 0) |
| |
| return grad_input * grad_output |
| |
| |
| @register_decomposition(aten.glu_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def glu_backward(grad_output: Tensor, self: Tensor, dim: int) -> Tensor: |
| assert self.dim() > 0, "glu does not support 0-dimensional tensors" |
| wrap_dim = utils.canonicalize_dim(self.dim(), dim) |
| nIn = self.size(wrap_dim) |
| assert ( |
| nIn % 2 == 0 |
| ), f"Halving dimension must be even, but dimension {wrap_dim} is size {nIn}" |
| inputSize = nIn // 2 |
| firstHalf = self.narrow(wrap_dim, 0, inputSize) |
| secondHalf = self.narrow(wrap_dim, inputSize, inputSize) |
| gradInputFirstHalf = torch.sigmoid(secondHalf) |
| gradInputSecondHalf = ( |
| (1.0 - gradInputFirstHalf) * gradInputFirstHalf * firstHalf * grad_output |
| ) |
| gradInputFirstHalf = gradInputFirstHalf * grad_output |
| return torch.cat([gradInputFirstHalf, gradInputSecondHalf], dim=wrap_dim) |
| |
| |
| @register_decomposition(aten.nll_loss_backward) |
| @out_wrapper("grad_input") |
| def nll_loss_backward( |
| grad_output: Tensor, |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor], |
| reduction: int, |
| ignore_index: int, |
| total_weight: Tensor, |
| ) -> Tensor: |
| assert 0 <= self.dim() <= 2, "input tensor should be 1D or 2D" |
| assert ( |
| target.dim() <= 1 |
| ), "0D or 1D target tensor expected, multi-target not supported" |
| |
| no_batch_dim = self.dim() == 1 and target.dim() == 0 |
| assert no_batch_dim or ( |
| self.shape[0] == target.shape[0] |
| ), f"size mismatch (got input: {self.shape}, target: {target.shape})" |
| assert total_weight.numel() == 1, ( |
| "expected total_weight to be a single element tensor, got: ", |
| f"{total_weight.shape} ({total_weight.numel()} elements)", |
| ) |
| |
| assert ( |
| weight is None or weight.numel() == self.shape[-1] |
| ), "weight tensor should be defined either for all or no classes" |
| |
| if reduction == Reduction.NONE.value and self.dim() == 2: |
| assert grad_output.dim() == 1 and grad_output.shape[0] == self.shape[0], ( |
| f"Expected a tensor of dimension 1 and tensor.size[0] == {self.shape[0]} but " |
| f"got: dimension {grad_output.dim()} and tensor.size[0] == {grad_output.shape[0]}" |
| ) |
| else: |
| assert ( |
| grad_output.dim() <= 1 and grad_output.numel() == 1 |
| ), f"Expected a single element grad_output tensor, but got: {grad_output.shape}" |
| |
| return _nll_loss_backward( |
| grad_output, self, target, weight, reduction, ignore_index, total_weight |
| ) |
| |
| |
| @register_decomposition(aten.nll_loss2d_backward) |
| @out_wrapper("grad_input") |
| def nll_loss2d_backward( |
| grad_output: Tensor, |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor], |
| reduction: int, |
| ignore_index: int, |
| total_weight: Tensor, |
| ) -> Tensor: |
| assert ( |
| self.dim() == 4 |
| ), f"only batches of spatial inputs supported (4D tensors), but got input of dimension: {self.dim()}" |
| |
| assert ( |
| target.dim() == 3 |
| ), f"only batches of spatial targets supported (3D tensors) but got targets of dimension: {target.dim()}" |
| |
| assert ( |
| self.shape[0] == target.shape[0] |
| and self.shape[2] == target.shape[1] |
| and self.shape[3] == target.shape[2] |
| ), f"size mismatch (got input: {self.shape}, target: {target.shape}" |
| |
| assert total_weight.numel() == 1, ( |
| "expected total_weight to be a single element tensor, " |
| f"got: {total_weight.shape} ( {total_weight.numel()}, elements)" |
| ) |
| |
| return _nll_loss_backward( |
| grad_output, self, target, weight, reduction, ignore_index, total_weight |
| ) |
| |
| |
| @register_decomposition(aten.binary_cross_entropy) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def binary_cross_entropy( |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor] = None, |
| reduction: int = Reduction.MEAN.value, |
| ) -> Tensor: |
| # We cannot currently model this without introducing data-dependent control flow |
| # TORCH_CHECK( |
| # (input_val >= 0) && (input_val <= 1), |
| # "all elements of input should be between 0 and 1" |
| # ) |
| loss = (target - 1) * torch.maximum( |
| torch.log1p(-self), self.new_full((), -100) |
| ) - target * torch.maximum(torch.log(self), self.new_full((), -100)) |
| if weight is not None: |
| loss = loss * weight |
| return apply_loss_reduction(loss, reduction) |
| |
| |
| @register_decomposition(aten.binary_cross_entropy_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def binary_cross_entropy_backward( |
| grad_output: Tensor, |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor] = None, |
| reduction: int = Reduction.MEAN.value, |
| ) -> Tensor: |
| EPSILON = 1e-12 |
| result = grad_output * (self - target) / torch.clamp(self * (1 - self), min=EPSILON) |
| if weight is not None: |
| result = result * weight |
| if reduction == Reduction.MEAN.value: |
| result = result / self.numel() |
| return result |
| |
| |
| @register_decomposition(aten.soft_margin_loss) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def soft_margin_loss( |
| input: Tensor, |
| target: Tensor, |
| reduction: int = Reduction.MEAN.value, |
| ) -> Tensor: |
| loss = torch.log1p(torch.exp(-input * target)) |
| return apply_loss_reduction(loss, reduction) |
| |
| |
| @register_decomposition(aten.soft_margin_loss_backward) |
| @out_wrapper("grad_input") |
| @pw_cast_for_opmath |
| def soft_margin_loss_backward( |
| grad_output: Tensor, |
| self: Tensor, |
| target: Tensor, |
| reduction: int = Reduction.MEAN.value, |
| ) -> Tensor: |
| grad_input = target * grad_output * (torch.sigmoid(target * self) - 1) |
| if reduction == Reduction.MEAN.value: |
| grad_input = grad_input / self.numel() |
| return grad_input |
| |
| |
| @register_decomposition(aten.dist) |
| @out_wrapper() |
| def dist(input: Tensor, other: Tensor, p: float = 2): |
| return aten.norm(input - other, p=p) |
| |
| |
| @register_decomposition(aten._euclidean_dist) |
| @out_wrapper() |
| def _euclidean_dist(x1: Tensor, x2: Tensor) -> Tensor: |
| x1_norm = x1.pow(2).sum(-1, True) |
| x1_pad = torch.ones_like(x1_norm, memory_format=torch.contiguous_format) |
| x2_norm = x2.pow(2).sum(-1, True) |
| x2_pad = torch.ones_like(x2_norm, memory_format=torch.contiguous_format) |
| x1_ = torch.cat([x1.mul(-2), x1_norm, x1_pad], -1) |
| x2_ = torch.cat([x2, x2_pad, x2_norm], -1) |
| result = x1_.matmul(x2_.mT) |
| return result.clamp_min(0).sqrt() |
| |
| |
| @register_decomposition(aten.slice_backward) |
| @out_wrapper() |
| def slice_backward( |
| grad_output: Tensor, |
| input_sizes: List[int], |
| dim: int, |
| start: int, |
| end: int, |
| step: int, |
| ): |
| grad_input = grad_output.new_zeros(input_sizes) |
| return torch.slice_scatter(grad_input, grad_output, dim, start, end, step) |
| |
| |
| @register_decomposition(aten.slice.Tensor) |
| def slice_forward( |
| # Tensor(a) self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1 |
| self: Tensor, |
| dim: int = 0, |
| start: Optional[int] = None, |
| end: Optional[int] = None, |
| step: int = 1, |
| ): |
| ndim = self.dim() |
| if ndim == 0: |
| raise RuntimeError("slice() cannot be applied to a 0-dim tensor.") |
| dim = utils.canonicalize_dim(self.dim(), dim) |
| sizes = list(self.size()) |
| strides = list(self.stride()) |
| |
| if step <= 0: |
| raise RuntimeError("slice step must be positive") |
| |
| start_val = start if start is not None else 0 |
| end_val = end if end is not None else sys.maxsize # 2^63 - 1 |
| |
| if start_val < 0: |
| start_val += sizes[dim] |
| |
| if end_val < 0: |
| end_val += sizes[dim] |
| |
| if start_val < 0: |
| start_val = 0 |
| elif start_val > sizes[dim]: |
| start_val = sizes[dim] |
| |
| if end_val < start_val: |
| end_val = start_val |
| elif end_val > sizes[dim]: |
| end_val = sizes[dim] |
| |
| storage_offset = self.storage_offset() + start_val * strides[dim] |
| len = end_val - start_val |
| sizes[dim] = (len + step - 1) // step |
| strides[dim] *= step |
| |
| if self.is_quantized: |
| raise NotImplementedError( |
| "Slice decomposition for quantized tensors aren't implemented" |
| ) |
| else: |
| return self.as_strided(sizes, strides, storage_offset) |
| |
| |
| @register_decomposition(aten.select_backward) |
| @out_wrapper() |
| def select_backward(grad_output: Tensor, input_sizes: List[int], dim: int, index: int): |
| grad_input = grad_output.new_zeros(input_sizes) |
| return torch.select_scatter(grad_input, grad_output, dim, index) |
| |
| |
| @register_decomposition(aten.diagonal_backward) |
| @out_wrapper() |
| def diagonal_backward( |
| grad_output: Tensor, input_sizes: List[int], offset: int, dim1: int, dim2: int |
| ): |
| grad_input = grad_output.new_zeros(input_sizes) |
| return torch.diagonal_scatter(grad_input, grad_output, offset, dim1, dim2) |
| |
| |
| def _cast_grad_to_input_dtype( |
| grad_output: Tensor, grad_input: Tensor, input_dtype: torch.dtype |
| ): |
| if grad_output.dtype != input_dtype: |
| grad_input = grad_input.to(input_dtype) |
| return grad_input |
| |
| |
| @register_decomposition(aten._softmax_backward_data) |
| @out_wrapper("grad_input") |
| @compute_only_pw_cast_for_opmath |
| def _softmax_backward_data( |
| grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype |
| ): |
| new_grad_output = grad_output * output |
| grad_input = new_grad_output - output * torch.sum( |
| new_grad_output, dim=dim, keepdim=True |
| ) |
| |
| # CPU kernel doesn't respect input_dtype, but following check doesn't work for meta tensor |
| # if grad_output.device == torch.device("cpu"): |
| # return grad_input.contiguous() |
| |
| return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype).contiguous() |
| |
| |
| @register_decomposition(aten._log_softmax_backward_data) |
| @out_wrapper() |
| @compute_only_pw_cast_for_opmath |
| def _log_softmax_backward_data( |
| grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype |
| ): |
| grad_input = grad_output - torch.exp(output) * torch.sum( |
| grad_output, dim=dim, keepdim=True |
| ) |
| return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype) |
| |
| |
| def _im2col_col2im_indices_along_dim( |
| input_d, kernel_d, dilation_d, padding_d, stride_d, device |
| ): |
| """Utility function to implement im2col and col2im""" |
| blocks_d = input_d + padding_d * 2 - dilation_d * (kernel_d - 1) |
| |
| arange_kw = partial(torch.arange, dtype=torch.int64, device=device) |
| |
| # Stride kernel over input and find starting indices along dim d |
| blocks_d_indices = arange_kw(0, blocks_d, stride_d).unsqueeze(0) |
| |
| # Apply dilation on kernel and find its indices along dim d |
| kernel_grid = arange_kw(0, kernel_d * dilation_d, dilation_d).unsqueeze(-1) |
| |
| # Broadcast and add kernel starting positions (indices) with |
| # kernel_grid along dim d, to get block indices along dim d |
| return blocks_d_indices + kernel_grid |
| |
| |
| @register_decomposition(aten.im2col) |
| @out_wrapper() |
| def im2col( |
| input: Tensor, |
| kernel_size: List[int], |
| dilation: List[int], |
| padding: List[int], |
| stride: List[int], |
| ) -> Tensor: |
| torch._check(len(kernel_size) == 2, lambda: "im2col(): only 2D kernel supported") |
| torch._check(len(dilation) == 2, lambda: "im2col(): only 2D dilation supported") |
| torch._check(len(padding) == 2, lambda: "im2col(): only 2D padding supported") |
| torch._check(len(stride) == 2, lambda: "im2col(): only 2D stride supported") |
| |
| def check_positive(param, param_name, strict=True): |
| cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param) |
| torch._check( |
| cond, lambda: "{param_name} should be greater {'than' zero, but got {param}" |
| ) |
| |
| check_positive(kernel_size, "kernel_size") |
| check_positive(dilation, "dilation") |
| check_positive(dilation, "padding", strict=False) |
| check_positive(stride, "stride") |
| |
| shape = input.shape |
| ndim = len(shape) |
| torch._check( |
| ndim in (3, 4) and all(d != 0 for d in shape[-3:]), |
| lambda: "Expected 3D or 4D (batch mode) tensor for input with possible 0 batch size " |
| f"and non-zero dimensions, but got: {tuple(shape)}", |
| ) |
| output_size = tuple( |
| 1 + (out + 2 * pad - dil * (ker - 1) - 1) // st |
| for out, pad, dil, ker, st in zip( |
| shape[-2:], padding, dilation, kernel_size, stride |
| ) |
| ) |
| torch._check( |
| all(c > 0 for c in output_size), |
| lambda: f"Given an input with spacial size {tuple(shape[-2:])}, " |
| f"kernel_size={kernel_size}, dilation={dilation}, " |
| f"padding={padding}, stride={stride}, " |
| "the calculated shape of the array of sliding blocks " |
| f"is {output_size}, but its components must be at least one.", |
| ) |
| batched_input = ndim == 4 |
| if not batched_input: |
| input = input.unsqueeze(0) |
| |
| batch_dim, channel_dim, input_h, input_w = input.shape |
| |
| stride_h, stride_w = stride |
| padding_h, padding_w = padding |
| dilation_h, dilation_w = dilation |
| kernel_h, kernel_w = kernel_size |
| |
| blocks_row_indices = _im2col_col2im_indices_along_dim( |
| input_h, kernel_h, dilation_h, padding_h, stride_h, input.device |
| ) |
| blocks_col_indices = _im2col_col2im_indices_along_dim( |
| input_w, kernel_w, dilation_w, padding_w, stride_w, input.device |
| ) |
| |
| # Note that F.pad takes (padding_left, padding_right, padding_top, padding_bottom) |
| # ugh |
| padded_input = F.pad(input, (padding_w, padding_w, padding_h, padding_h)) |
| |
| blocks_row_indices = blocks_row_indices.unsqueeze(-1).unsqueeze(-1) |
| output = padded_input[:, :, blocks_row_indices, blocks_col_indices] |
| output = output.permute(0, 1, 2, 4, 3, 5) |
| num_blocks_row = blocks_row_indices.size(1) |
| num_blocks_col = blocks_col_indices.size(1) |
| output = output.reshape( |
| batch_dim, channel_dim * kernel_h * kernel_w, num_blocks_row * num_blocks_col |
| ) |
| |
| if not batched_input: |
| output = output.squeeze(0) |
| return output |
| |
| |
| @register_decomposition(aten.col2im) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def col2im( |
| input: Tensor, |
| output_size: List[int], |
| kernel_size: List[int], |
| dilation: List[int], |
| padding: List[int], |
| stride: List[int], |
| ) -> Tensor: |
| torch._check(len(output_size) == 2, lambda: "only 2D output_size supported") |
| torch._check(len(kernel_size) == 2, lambda: "only 2D kernel supported") |
| torch._check(len(dilation) == 2, lambda: "only 2D dilation supported") |
| torch._check(len(padding) == 2, lambda: "only 2D padding supported") |
| torch._check(len(stride) == 2, lambda: "only 2D stride supported") |
| |
| def check_positive(param, param_name, strict=True): |
| cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param) |
| torch._check( |
| cond, lambda: "{param_name} should be greater than zero, but got {param}" |
| ) |
| |
| check_positive(kernel_size, "kernel_size") |
| check_positive(dilation, "dilation") |
| check_positive(padding, "padding", strict=False) |
| check_positive(stride, "stride") |
| check_positive(output_size, "output_size") |
| |
| shape = input.shape |
| ndim = len(shape) |
| torch._check( |
| ndim in (2, 3) and all(d != 0 for d in shape[-2:]), |
| lambda: "Expected 2D or 3D (batch mode) tensor for input with possible 0 batch size " |
| f"and non-zero dimensions, but got: {tuple(shape)}", |
| ) |
| prod_kernel_size = kernel_size[0] * kernel_size[1] |
| torch._check( |
| shape[-2] % prod_kernel_size == 0, |
| lambda: "Expected size of input's first non-batch dimension to be divisible by the " |
| f"product of kernel_size, but got input.shape[-2] = {shape[-2]} and " |
| f"kernel_size={kernel_size}", |
| ) |
| col = [ |
| 1 + (out + 2 * pad - dil * (ker - 1) - 1) // st |
| for out, pad, dil, ker, st in zip( |
| output_size, padding, dilation, kernel_size, stride |
| ) |
| ] |
| L = col[0] * col[1] |
| torch._check( |
| shape[-1] == L, |
| lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, " |
| f"dilation={dilation}, padding={padding}, stride={stride}, " |
| f"expected input.size(-1) to be {L} but got {shape[-1]}.", |
| ) |
| torch._check( |
| L > 0, |
| lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, " |
| f"dilation={dilation}, padding={padding}, stride={stride}, " |
| f"expected input.size(-1) to be {L} but got {shape[-1]}.", |
| ) |
| batched_input = ndim == 3 |
| if not batched_input: |
| input = input.unsqueeze(0) |
| |
| shape = input.shape |
| |
| out_h, out_w = output_size |
| stride_h, stride_w = stride |
| padding_h, padding_w = padding |
| dilation_h, dilation_w = dilation |
| kernel_h, kernel_w = kernel_size |
| |
| # col2im is defined as the backwards of im2col, so we differentiate its decomposition by hand |
| input = input.reshape([shape[0], shape[1] // prod_kernel_size] + kernel_size + col) |
| input = input.permute(0, 1, 2, 4, 3, 5) |
| |
| indices_row = _im2col_col2im_indices_along_dim( |
| out_h, kernel_h, dilation_h, padding_h, stride_h, input.device |
| ) |
| indices_row = _unsqueeze_to_dim(indices_row, 4) |
| indices_col = _im2col_col2im_indices_along_dim( |
| out_w, kernel_w, dilation_w, padding_w, stride_w, input.device |
| ) |
| |
| output_padded_size = [o + 2 * p for o, p in zip(output_size, padding)] |
| output = input.new_zeros( |
| [shape[0], shape[1] // prod(kernel_size)] + output_padded_size |
| ) |
| idx = (None, None, indices_row, indices_col) |
| output = aten._unsafe_index_put(output, idx, input, accumulate=True) |
| output = F.pad(output, (-padding_w, -padding_w, -padding_h, -padding_h)) |
| |
| if not batched_input: |
| output = output.squeeze(0) |
| return output |
| |
| |
| @register_decomposition(aten.native_dropout_backward) |
| @out_wrapper() |
| def native_dropout_backward(grad_output: Tensor, mask: Tensor, scale: float): |
| # According to the CUDA kernel implementation we should have this test; |
| # but it seems to fail tests! |
| # torch._check(mask.dtype == torch.bool, lambda: f"Mask should be Bool Scalar Type {mask.dtype}") |
| |
| # Mimicking CUDA kernel's behavior for output stride: output follow input's memory format |
| # This different from TensorIterator's behavior |
| r = (grad_output * (mask.type_as(grad_output) * scale)).clone( |
| memory_format=utils.suggest_memory_format(grad_output) |
| ) |
| return r |
| |
| |
| @register_decomposition(aten.unfold_backward) |
| @out_wrapper() |
| def unfold_backward( |
| grad: Tensor, input_size: List[int], dimension: int, size: int, step: int |
| ) -> Tensor: |
| if len(input_size) == 0: |
| return torch.squeeze_copy(grad, 0) |
| dim = utils.canonicalize_dim(len(input_size), dimension) |
| idx = torch.arange(input_size[dim], device=grad.device, dtype=torch.int32) |
| idx = idx.unfold(0, size, step).flatten() |
| grad = grad.movedim(-1, dim + 1).flatten(dim, dim + 1) |
| # nb. At the moment this generates two kernels in triton |
| # It could potentially be fused into one call to scatter_reduce, |
| # in the case step <= size provided scatter_reduce generates 1 kernel |
| grad_input = grad.new_zeros(input_size) |
| index = (None,) * dim + (idx,) |
| return aten._unsafe_index_put(grad_input, index, grad, accumulate=True).contiguous() |
| |
| |
| @register_decomposition(aten.logit_backward.default) |
| @pw_cast_for_opmath |
| def logit_backward( |
| grad_output: Tensor, self: Tensor, eps: Optional[float] = None |
| ) -> Tensor: |
| if eps is not None: |
| lo = eps |
| hi = 1.0 - lo |
| return torch.where( |
| torch.logical_and(self >= lo, self <= hi), |
| grad_output / (self * (1.0 - self)), |
| 0.0, |
| ) |
| else: |
| return torch.where( |
| torch.logical_and(self >= 0.0, self <= 1.0), |
| grad_output / (self * (1.0 - self)), |
| self.new_full((), float("nan")), |
| ) |
| |
| |
| @register_decomposition(aten.dropout) |
| @aten.dropout.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.dropout.default.py_impl(DispatchKey.Autograd) |
| def dropout(input: Tensor, p: float, train: Optional[bool]): |
| if train and p != 0: |
| return aten.native_dropout(input, p, train)[0] |
| else: |
| return input.clone() |
| |
| |
| @register_decomposition(aten.native_dropout) |
| @out_wrapper("out0", "out1") |
| def native_dropout(input: Tensor, p: float, train: Optional[bool]): |
| if train and p != 0: |
| if p == 1: |
| return (torch.zeros_like(input), torch.zeros_like(input, dtype=torch.bool)) |
| if not input.dtype.is_floating_point: |
| raise RuntimeError( |
| "result type Float can't be cast to the desired output type Long" |
| ) |
| bool_mask = torch.rand_like(input) > p |
| res = bool_mask * input * float(1.0 / (1.0 - p)) |
| return (res, bool_mask) |
| else: |
| return (input, torch.ones_like(input, dtype=torch.bool)) |
| |
| |
| @register_decomposition(aten._softmax) |
| @out_wrapper() |
| def _softmax(x: Tensor, dim: int, half_to_float: bool): |
| # eager softmax returns a contiguous tensor. Ensure that decomp also returns |
| # a contiguous tensor. |
| x = x.contiguous() |
| if half_to_float: |
| assert x.dtype == torch.half |
| computation_dtype, result_dtype = utils.elementwise_dtypes( |
| x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| x = x.to(computation_dtype) |
| if x.numel() == 0: |
| unnormalized = torch.exp(x) |
| else: |
| x_max = torch.amax(x, dim, keepdim=True) |
| unnormalized = torch.exp(x - x_max) |
| result = unnormalized / torch.sum(unnormalized, dim, keepdim=True) |
| if not half_to_float: |
| result = result.to(result_dtype) |
| return result |
| |
| |
| @register_decomposition(aten._log_softmax) |
| @out_wrapper() |
| def _log_softmax(x: Tensor, dim: int, half_to_float: bool): |
| # eager log_softmax returns a contiguous tensor. Ensure that decomp also |
| # returns a contiguous tensor. |
| x = x.contiguous() |
| if half_to_float: |
| assert x.dtype == torch.half |
| computation_dtype, result_dtype = utils.elementwise_dtypes( |
| x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| x = x.to(computation_dtype) |
| if x.numel() == 0: |
| shifted = x |
| else: |
| x_max = torch.amax(x, dim, keepdim=True) |
| shifted = x - x_max |
| shifted_logsumexp = torch.log(torch.sum(torch.exp(shifted), dim, keepdim=True)) |
| result = shifted - shifted_logsumexp |
| if not half_to_float: |
| result = result.to(result_dtype) |
| return result |
| |
| |
| @register_decomposition(aten.embedding) |
| @out_wrapper() |
| def embedding( |
| weight: Tensor, |
| indices: Tensor, |
| padding_idx: int = -1, |
| scale_grad_by_freq: bool = False, |
| sparse: bool = False, |
| ) -> Tensor: |
| assert weight.dim() == 2, "'weight' must be 2-D" |
| # Nb. scale_grad_by_freq is not used in the forward |
| if indices.ndim <= 1: |
| # We need this one as weight[indices] calls item() in these cases |
| out = weight.index_select(0, indices) |
| if indices.ndim == 0: |
| out = out.squeeze(0) |
| return out |
| else: |
| return weight[indices] |
| |
| |
| @register_decomposition(aten.embedding_dense_backward) |
| @out_wrapper() |
| def embedding_dense_backward( |
| grad_output: Tensor, |
| indices: Tensor, |
| num_weights: int, |
| padding_idx: int, |
| scale_grad_by_freq: bool, |
| ): |
| computation_dtype, result_dtype = utils.elementwise_dtypes( |
| grad_output, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| grad_output = grad_output.to(computation_dtype) |
| indices = _maybe_convert_to_dtype(indices, torch.long) # type: ignore[assignment] |
| if scale_grad_by_freq: |
| counts = indices.new_zeros((num_weights,)) |
| ones = torch.ones_like(indices) |
| counts = aten._unsafe_index_put(counts, [indices], ones, accumulate=True) |
| grad_weights_scale = counts[indices] |
| grad_output = grad_output / grad_weights_scale.unsqueeze(-1) |
| |
| mask = _unsqueeze_to_dim(indices == padding_idx, grad_output.ndim) |
| grad = grad_output.masked_fill(mask, 0) |
| grad_weight = grad_output.new_zeros( |
| (num_weights,) + grad_output.shape[indices.ndim :] |
| ) |
| return aten._unsafe_index_put(grad_weight, [indices], grad, accumulate=True).to( |
| result_dtype |
| ) |
| |
| |
| def prod(x: List[int]): |
| r = 1 |
| for i in x: |
| r *= i |
| return r |
| |
| |
| def _pad_chunk( |
| tensors: List[Tensor], |
| dim: int, |
| num_chunks: int, |
| ) -> List[Tensor]: |
| padded_tensors = [] |
| for tensor in tensors: |
| tensor_size = tensor.size() |
| pad_along_dim = (tensor_size[dim] + num_chunks - 1) // num_chunks * num_chunks |
| if pad_along_dim != tensor_size[dim]: |
| # Use aten.constant_pad_nd instead of copy_ for functionalization |
| pad = [0] * 2 * (tensor.ndim - dim - 1) + [ |
| 0, |
| pad_along_dim - tensor_size[dim], |
| ] |
| tensor = aten.constant_pad_nd(tensor, pad, 0) |
| view_size = tensor_size[:dim] + torch.Size([num_chunks, -1]) |
| padded_tensors.append(tensor.view(view_size)) |
| return padded_tensors |
| |
| |
| def have_same_ndims(tensors: List[Tensor]): |
| ndim = tensors[0].ndim |
| for tensor in tensors: |
| if tensor.ndim != ndim: |
| return False |
| return True |
| |
| |
| def leading_dimension_matches(tensors: List[Tensor], dim: int): |
| leading_dim_sizes = tensors[0].size()[:dim] |
| for tensor in tensors: |
| torch._check( |
| tensor.size()[:dim] == leading_dim_sizes, |
| lambda: "_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors", |
| ) |
| |
| |
| def _preprocess_chunk_cat_inputs( |
| tensors: List[Tensor], |
| dim: int, |
| num_chunks: int, |
| ): |
| torch._check(num_chunks >= 1, lambda: "_chunk_cat expects positive num_chunks") |
| torch._check( |
| len(tensors) > 0, lambda: "_chunk_cat expects a non-empty input tensor list" |
| ) |
| expected_dtype = tensors[0].dtype |
| expected_device = tensors[0].device |
| for tensor in tensors: |
| torch._check(tensor.numel() > 0, lambda: "_chunk_cat expects non-empty tensor") |
| torch._check( |
| tensor.dtype == expected_dtype, |
| lambda: "_chunk_cat expects all input tensors with the same dtype", |
| ) |
| torch._check( |
| tensor.device == expected_device, |
| lambda: "_chunk_cat expects all inputs tensors on the same device", |
| ) |
| if have_same_ndims(tensors): |
| dim = utils.canonicalize_dim(tensors[0].dim(), dim) |
| else: |
| torch._check( |
| dim >= 0, |
| lambda: "_chunk_cat expects non-negative dim when input tensors have different ndims", |
| ) |
| for tensor in tensors: |
| torch._check( |
| dim < tensor.ndim, |
| lambda: "_chunk_cat expects dim < ndim for all input tensors", |
| ) |
| leading_dimension_matches(tensors, dim) |
| return dim |
| |
| |
| @register_decomposition([aten._chunk_cat.default, aten._chunk_cat.out]) |
| def _chunk_cat( |
| tensors: List[Tensor], |
| dim: int, |
| num_chunks: int, |
| out: Optional[Tensor] = None, |
| ) -> Tensor: |
| dim = _preprocess_chunk_cat_inputs(tensors, dim, num_chunks) |
| padded_tensors = _pad_chunk(tensors, dim, num_chunks) |
| if out is None: |
| return torch.cat(padded_tensors, dim + 1) |
| else: |
| torch.cat(padded_tensors, dim + 1, out=out) |
| return out |
| |
| |
| @register_decomposition(aten.split_with_sizes) |
| def split_with_sizes( |
| self: Tensor, split_sizes: List[int], dim: int = 0 |
| ) -> List[Tensor]: |
| # NB: Perform the check_is_size tests first so that the |
| # sum test does not try to do a replacement |
| for i in range(len(split_sizes)): |
| torch._check_is_size( |
| split_sizes[i], |
| lambda: "split_with_sizes expects split_sizes have only non-negative entries", |
| ) |
| torch._check_with( |
| ValueError, |
| sum(split_sizes) == self.shape[dim], |
| lambda: f"Split sizes add up to {sum(split_sizes)} but got the tensor's size of {self.shape[dim]}", |
| ) |
| num_splits = len(split_sizes) |
| splits = [] |
| start_idx = 0 |
| |
| # Avoid importing sympy at a module level |
| from torch.fx.experimental.symbolic_shapes import expect_true |
| |
| for i in range(num_splits): |
| length = split_sizes[i] |
| # We know this is true thanks to the sum, but this assertion helps |
| # out our internal reasoning |
| expect_true(start_idx + length <= self.shape[dim]) |
| splits.append(self.narrow(dim, start_idx, length)) |
| start_idx += length |
| return splits |
| |
| |
| # out_wrapper currently does not allow optional outputs |
| @register_decomposition( |
| [aten.split_with_sizes_copy.default, aten.split_with_sizes_copy.out] |
| ) |
| def split_with_sizes_copy( |
| self: Tensor, |
| split_sizes: List[int], |
| dim: int = 0, |
| out: Optional[List[Tensor]] = None, |
| ) -> Optional[List[Tensor]]: |
| splits = split_with_sizes(self, split_sizes, dim=dim) |
| if out is None: |
| return [s.clone(memory_format=torch.contiguous_format) for s in splits] |
| else: |
| for output, split in zip(out, splits): |
| _maybe_resize_out(output, split.shape) |
| _safe_copy_out(copy_from=split, copy_to=output, exact_dtype=True) |
| return None |
| |
| |
| @register_decomposition(aten.unsafe_split.Tensor) |
| def unsafe_split(input: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]: |
| return aten.split.Tensor(input, split_size, dim) |
| |
| |
| @register_decomposition(aten.unsafe_split_with_sizes.default) |
| def unsafe_split_with_sizes( |
| input: Tensor, split_sizes: List[int], dim: int = 0 |
| ) -> Tuple[Tensor, ...]: |
| return aten.split_with_sizes.default(input, split_sizes, dim) |
| |
| |
| @register_decomposition(aten.split.Tensor) |
| def split(self: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]: |
| input_sizes = self.shape |
| dim_size = input_sizes[dim] |
| if split_size == 0: |
| assert dim_size == 0 |
| return (self,) |
| chunks = (dim_size + split_size - 1) // split_size |
| |
| # Avoid importing sympy at a module level |
| from torch.fx.experimental.symbolic_shapes import guard_int |
| |
| chunks = guard_int(chunks) |
| split_sizes = [split_size for i in range(chunks)] |
| split_sizes[-1] = split_size - (split_size * chunks - dim_size) |
| return torch.split(self, split_sizes, dim) |
| |
| |
| @aten.tensor_split.tensor_indices_or_sections.py_impl( |
| DispatchKey.CompositeImplicitAutograd |
| ) |
| def tensor_split_tensor_indices_or_sections_py_impl( |
| self: Tensor, |
| tensor_indices_or_sections: Tensor, |
| dim: int = 0, |
| ) -> Tuple[Tensor, ...]: |
| assert tensor_indices_or_sections.device.type == "cpu" |
| assert tensor_indices_or_sections.dtype == torch.int64 |
| split_dim = tensor_indices_or_sections.dim() |
| torch._check( |
| split_dim == 1 or split_dim == 0, |
| lambda: "tensor_split expected tensor_indices_or_sections to be a zero-dimensional " |
| f"or one-dimensional tensor, but got a tensor with {split_dim} dims", |
| ) |
| if split_dim == 0: |
| sections = tensor_indices_or_sections.item() |
| assert isinstance(sections, IntLike) |
| return self.tensor_split(sections, dim) |
| else: |
| indices = [i.item() for i in tensor_indices_or_sections] |
| # WARNING: Tempted to torch._check_is_size on the indices here? You |
| # can't: tensor_split works with negative values in indices: |
| # |
| # >>> torch.tensor_split(torch.randn(10), torch.tensor([-5, 5])) |
| # (tensor([ 0.3540, 2.1074, -0.8507, 1.1639, 0.3055]), tensor([]), |
| # tensor([-0.4285, 1.0692, -0.1776, 0.9362, 1.6143])) |
| # |
| # Sorry, I don't make the rules. Explicitly do the item call in user |
| # code if you KNOW that they are non-negative. |
| return self.tensor_split(indices, dim) |
| |
| |
| # TODO: this doesn't appear to have enough precision in bfloat16 |
| @register_decomposition(aten.addmm) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, beta: int = 1, alpha: int = 1): |
| if not self.is_floating_point() and not self.is_complex(): |
| beta = int(beta) |
| alpha = int(alpha) |
| out = alpha * torch.mm(mat1, mat2) |
| if beta == 0: |
| return out |
| |
| # The output of aten.addmm is contiguous, we need to match this behavior in the decomposition. |
| # The original implementation 'beta * self + out' would return a strided tensor if `self` is strided. |
| # We thus use `out`, the output of torch.mm, which is always contiguous, as the first argument for addition. |
| # This is relying on TensorIterator's behavior that it takes higher precedence on the stride of first input. |
| # Alternative, we can write `(beta * self + out).contiguous()`, but it introduces another copy in some cases. |
| # This implementation is not ideal, and we should revisit this when we have a better solution. |
| return out + beta * self |
| |
| |
| @register_decomposition(aten._addmm_activation) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def _addmm_activation( |
| self: Tensor, |
| mat1: Tensor, |
| mat2: Tensor, |
| beta: int = 1, |
| alpha: int = 1, |
| use_gelu: bool = False, |
| ): |
| out = addmm(self, mat1, mat2, beta, alpha) |
| if use_gelu: |
| if self.is_cuda: |
| return aten.gelu(out, approximate="tanh") |
| else: |
| return aten.gelu(out) |
| return aten.relu(out) |
| |
| |
| @register_decomposition(aten.addmv) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def addmv(self: Tensor, mat1: Tensor, vec: Tensor, beta: int = 1, alpha: int = 1): |
| if not self.is_floating_point() and not self.is_complex(): |
| beta = int(beta) |
| alpha = int(alpha) |
| out = alpha * torch.mv(mat1, vec) |
| if beta == 0: |
| return out |
| return out + beta * self |
| |
| |
| @register_decomposition(aten.native_group_norm_backward.default) |
| @pw_cast_for_opmath |
| def native_group_norm_backward( |
| grad_output: Tensor, |
| input: Tensor, |
| mean: Tensor, |
| rstd: Tensor, |
| gamma: Optional[Tensor], |
| N: int, |
| C: int, |
| HxW: int, |
| group: int, |
| output_mask: List[bool], |
| ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: |
| utils.check_same_device( |
| grad_output, input, mean, rstd, allow_cpu_scalar_tensors=False |
| ) |
| utils.check_same_shape(input, grad_output, allow_cpu_scalar_tensors=False) |
| utils.check_same_shape(mean, rstd, allow_cpu_scalar_tensors=False) |
| torch._check( |
| input.numel() == N * C * HxW, |
| lambda: f"Expect input to have { N * C * HxW} elements", |
| ) |
| torch._check( |
| mean.shape == (N, group), |
| lambda: f"Expect mean to have shape ({N}, {group}, but got {mean.shape}", |
| ) |
| torch._check( |
| gamma is None or gamma.numel() == C, |
| lambda: f"Expect gamma to have {C} elements but got {gamma.numel() if gamma is not None else -1}", |
| ) |
| |
| cpg, _rem = divmod(C, group) |
| torch._check( |
| _rem == 0, |
| lambda: f"Expect number of channels {C} to be evenly-divisible by number of groups {group}", |
| ) |
| |
| # Compute Internal gradients |
| ds = torch.mul(grad_output, input).view(N, C, HxW).sum(dim=[2]) |
| db = grad_output.view(N, C, HxW).sum(dim=[2]) |
| |
| d_input: Optional[Tensor] = None |
| d_gamma: Optional[Tensor] = None |
| d_bias: Optional[Tensor] = None |
| if output_mask[0]: |
| s = 1.0 / (HxW * cpg) |
| if gamma is not None: |
| ds_val = torch.mul(ds, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2) |
| db_val = torch.mul(db, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2) |
| c1 = torch.mul( |
| rstd.unsqueeze(-1), |
| gamma.reshape(1, group, cpg), |
| ) |
| else: |
| ds_val = ds.reshape(N, group, cpg).sum(2) |
| db_val = db.reshape(N, group, cpg).sum(2) |
| c1 = torch.mul( |
| rstd.unsqueeze(-1), |
| torch.ones((1, group, cpg), device=rstd.device), |
| ) |
| c2 = (db_val * mean - ds_val) * rstd * rstd * rstd * s |
| c3 = -c2 * mean - db_val * rstd * s |
| |
| c1 = c1.unsqueeze(-1) |
| c2 = _unsqueeze_to_dim(c2, 4) |
| c3 = _unsqueeze_to_dim(c3, 4) |
| d_input = ( |
| torch.mul(grad_output.reshape(N, group, cpg, HxW), c1) |
| + torch.mul(input.reshape(N, group, cpg, HxW), c2) |
| + c3 |
| ) |
| d_input = d_input.reshape(input.shape).to(input.dtype) |
| if output_mask[1]: |
| d_gamma = ( |
| ( |
| (ds.view(N, group, cpg) - db.view(N, group, cpg) * mean.unsqueeze(-1)) |
| * rstd.unsqueeze(-1) |
| ) |
| .sum(dim=[0]) |
| .reshape(C) |
| ) |
| if output_mask[2]: |
| d_bias = db.sum(dim=[0]) |
| |
| return (d_input, d_gamma, d_bias) |
| |
| |
| # out_wrapper currently does not allow optional outputs |
| @register_decomposition(aten.native_group_norm_backward.out) |
| def native_group_norm_backward_out( |
| grad_output: Tensor, |
| input: Tensor, |
| mean: Tensor, |
| rstd: Tensor, |
| gamma: Optional[Tensor], |
| N: int, |
| C: int, |
| HxW: int, |
| group: int, |
| output_mask: List[bool], |
| *, |
| out0: torch.Tensor, |
| out1: torch.Tensor, |
| out2: torch.Tensor, |
| ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: |
| result = native_group_norm_backward( |
| grad_output, input, mean, rstd, gamma, N, C, HxW, group, output_mask |
| ) |
| grad_input = (out0, out1, out2) |
| for i, r in enumerate(result): |
| if r is not None: |
| _maybe_resize_out(grad_input[i], r.shape) |
| _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True) |
| |
| return grad_input |
| |
| |
| def _maybe_cast(x: Optional[Tensor], dtype) -> Optional[Tensor]: |
| if x is not None: |
| return x.to(dtype) |
| return x |
| |
| |
| # TODO: Take a closer look at the type promotion semantics |
| @register_decomposition(aten.native_layer_norm_backward.default) |
| def native_layer_norm_backward( |
| grad_out: Tensor, |
| input: Tensor, |
| normalized_shape: List[int], |
| mean: Tensor, |
| rstd: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| output_mask: List[bool], |
| ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: |
| input_shape = input.shape |
| input_ndim = input.dim() |
| computation_dtype = utils.get_computation_dtype(input.dtype) |
| grad_out_cast, input_cast, weight_cast, bias_cast = ( |
| x.to(computation_dtype).contiguous() if x is not None else x |
| for x in (grad_out, input, weight, bias) |
| ) |
| assert grad_out_cast is not None |
| |
| axis = input_ndim - len(normalized_shape) |
| inner_dims = input_shape[axis:] |
| outer_dims = input_shape[:axis] |
| inner_dim_indices: List[int] = [] |
| outer_dim_indices: List[int] = [] |
| for i in range(input_ndim): |
| if i >= axis: |
| inner_dim_indices.append(i) |
| else: |
| outer_dim_indices.append(i) |
| |
| N = prod(inner_dims) # type: ignore[arg-type] |
| M = prod(outer_dims) # type: ignore[arg-type] |
| if M <= 0 or N <= 0: |
| return ( |
| input.new_zeros(input_shape) if output_mask[0] else None, |
| input.new_zeros(input_shape[axis:]) if output_mask[1] else None, |
| input.new_zeros(input_shape[axis:]) if output_mask[2] else None, |
| ) |
| mean = _unsqueeze_to_dim(mean, input_cast.dim()) # type: ignore[union-attr] |
| rstd = _unsqueeze_to_dim(rstd, input_cast.dim()) # type: ignore[union-attr] |
| x_hat = (input_cast - mean) * rstd |
| if weight_cast is not None: |
| grad_x_hat = grad_out_cast * weight_cast |
| else: |
| grad_x_hat = grad_out_cast |
| a = grad_x_hat * N |
| b = torch.sum(grad_x_hat, inner_dim_indices, True) |
| c1 = torch.mul(grad_x_hat, x_hat) |
| c2 = torch.sum(c1, inner_dim_indices, True) |
| c3 = torch.mul(x_hat, c2) |
| |
| inner = a - b - c3 |
| d_input: Optional[Tensor] = None |
| d_weight: Optional[Tensor] = None |
| d_bias: Optional[Tensor] = None |
| if output_mask[0]: |
| d_input = (rstd / N) * inner |
| |
| if output_mask[1] and weight_cast is not None: |
| if len(outer_dim_indices) > 0: |
| d_weight = torch.sum(grad_out_cast * x_hat, outer_dim_indices, False) |
| else: |
| d_weight = grad_out_cast * x_hat |
| |
| if output_mask[2] and bias_cast is not None: |
| if len(outer_dim_indices) > 0: |
| d_bias = torch.sum(grad_out_cast, outer_dim_indices, False) |
| else: |
| d_bias = grad_out_cast.clone() |
| |
| return ( |
| _maybe_cast(d_input, input.dtype), |
| _maybe_cast(d_weight, input.dtype), |
| _maybe_cast(d_bias, input.dtype), |
| ) |
| |
| |
| # out_wrapper currently does not allow optional outputs |
| @register_decomposition(aten.native_layer_norm_backward.out) |
| def native_layer_norm_backward_out( |
| grad_out: Tensor, |
| input: Tensor, |
| normalized_shape: List[int], |
| mean: Tensor, |
| rstd: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| output_mask: List[bool], |
| *, |
| out0: torch.Tensor, |
| out1: torch.Tensor, |
| out2: torch.Tensor, |
| ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: |
| result = native_layer_norm_backward( |
| grad_out, input, normalized_shape, mean, rstd, weight, bias, output_mask |
| ) |
| grad_input = (out0, out1, out2) |
| for i, r in enumerate(result): |
| if r is not None: |
| _maybe_resize_out(grad_input[i], r.shape) |
| _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True) |
| |
| return grad_input |
| |
| |
| def native_batch_norm_helper( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| training: bool, |
| momentum: float, |
| eps: float, |
| functional: bool, |
| ) -> Tuple[Tensor, Tensor, Tensor, Optional[Tensor], Optional[Tensor]]: |
| reduction_dims = [0] + list(range(2, input.dim())) |
| computation_dtype = utils.get_computation_dtype(input.dtype) |
| new_running_mean = running_mean |
| new_running_var = running_var |
| if training: |
| computation_dtype = utils.get_computation_dtype(input.dtype) |
| input_acc = input.to(dtype=computation_dtype) |
| biased_var, mean = torch.var_mean( |
| input_acc, dim=reduction_dims, correction=0, keepdim=True |
| ) |
| rstd = torch.rsqrt(biased_var + eps) |
| |
| output = (input - mean) * rstd |
| |
| save_mean = torch.squeeze(mean, reduction_dims) |
| save_rstd = torch.squeeze(rstd, reduction_dims) |
| if running_mean is not None: |
| new_running_mean = momentum * save_mean + (1 - momentum) * running_mean |
| if not functional: |
| running_mean.copy_(new_running_mean) |
| if running_var is not None: |
| n = input.numel() / input.shape[1] |
| # This doesn't strictly match eager's numerics, which accumulates var sum and then directly applies the correction |
| # But... that would require re-implementing var here, for negligible numerics gain on a tensor whose |
| # numerics probably don't matter. |
| squeezed_var = torch.squeeze(biased_var, reduction_dims) |
| unbiased_var = squeezed_var * (n / (n - 1)) |
| new_running_var = momentum * unbiased_var + (1 - momentum) * running_var |
| if not functional: |
| running_var.copy_(new_running_var) |
| else: |
| assert running_mean is not None and running_var is not None |
| running_mean = running_mean.to(dtype=computation_dtype, copy=True) |
| new_running_mean = running_mean |
| running_var = running_var.to(dtype=computation_dtype, copy=True) |
| new_running_var = running_var |
| mean = running_mean |
| invstd = 1 / (torch.sqrt(running_var + eps)) |
| # Very annoying inconsistency where CPU and CUDA give different shapes |
| if input.device.type != "cpu": |
| save_mean = running_mean |
| save_rstd = invstd |
| else: |
| save_mean = input.new_zeros((0,)) |
| save_rstd = input.new_zeros((0,)) |
| mean = _unsqueeze_to_dim(mean, input.dim() - 1) |
| invstd = _unsqueeze_to_dim(invstd, input.dim() - 1) |
| output = (input - mean) * invstd |
| |
| if weight is not None: |
| weight = weight.flatten() |
| weight = _unsqueeze_to_dim(weight, input.dim() - 1) |
| output = output * weight |
| |
| if bias is not None: |
| bias = bias.flatten() |
| bias = _unsqueeze_to_dim(bias, input.dim() - 1) |
| output = output + bias |
| |
| if input.device.type == "cpu": |
| save_mean = save_mean.to(dtype=input.dtype) |
| save_rstd = save_rstd.to(dtype=input.dtype) |
| return ( |
| output.to(dtype=input.dtype), |
| save_mean, |
| save_rstd, |
| new_running_mean, |
| new_running_var, |
| ) |
| |
| |
| @register_decomposition(aten.native_batch_norm) |
| @out_wrapper("out", "save_mean", "save_invstd") |
| def native_batch_norm( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| training: bool, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| output, save_mean, save_rstd, _, _ = native_batch_norm_helper( |
| input, weight, bias, running_mean, running_var, training, momentum, eps, False |
| ) |
| return output, save_mean, save_rstd |
| |
| |
| # TODO: this decomposition is NOT here to stay. We would much prefer replacing native_batch_norm |
| # with our new correctly schema'd _native_batch_norm_legit and its variants, but |
| # we cannot do that immediately in the C++ because it would be forwards incompatible |
| # with some mobile use cases. |
| # |
| # Since this change is most impactful for aot autograd/functionalization, we simply |
| # register this decomposition on the Autograd key for the python dispatcher (which is |
| # currently only used by aot autograd/functionalization and no one else, really). |
| # In two weeks or so, we should remove this decomposition and phase out the current native_batch_norm |
| # to be _native_batch_norm_legit and have the right schema (stating that there are input mutations). |
| @aten.native_batch_norm.default.py_impl(DispatchKey.Autograd) |
| @aten.native_batch_norm.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| def native_batch_norm_decomposition( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| training: bool, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| if running_mean is None and running_var is None: |
| return aten._native_batch_norm_legit( |
| input, weight, bias, training, momentum, eps |
| ) |
| if running_mean is None: |
| raise RuntimeError( |
| "running_mean is None, but running_var is provided. " |
| "They should both be None or both be provided." |
| ) |
| if running_var is None: |
| raise RuntimeError( |
| "running_var is None, but running_mean is provided. " |
| "They should both be None or both be provided." |
| ) |
| if training: |
| # HACK: batch norm consolidation should clean this up so this op doesn't take in a training arg. |
| return aten._native_batch_norm_legit( |
| input, weight, bias, running_mean, running_var, training, momentum, eps |
| ) |
| else: |
| return aten._native_batch_norm_legit_no_training( |
| input, weight, bias, running_mean, running_var, momentum, eps |
| ) |
| |
| |
| @aten.unsafe_chunk.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| def unsafe_chunk_py_impl(tensor, chunks, dim=0) -> List[Tensor]: |
| dim_size = tensor.size(dim) |
| split_size = (dim_size + chunks - 1) // chunks |
| |
| if split_size == 0 and dim_size == 0: |
| split_sizes = [split_size for _ in chunks] |
| split_sizes[chunks - 1] = split_size - (split_size * chunks - dim_size) |
| return torch.ops.aten.unsafe_split_with_sizes.default(tensor, split_sizes, dim) |
| return torch.ops.aten.unsafe_split.Tensor(tensor, split_size, dim) |
| |
| |
| @register_decomposition(aten._native_batch_norm_legit_no_training.default) |
| def _native_batch_norm_legit_no_training( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Tensor, |
| running_var: Tensor, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| return aten._native_batch_norm_legit.default( |
| input, |
| weight, |
| bias, |
| running_mean, |
| running_var, |
| False, # training |
| momentum, |
| eps, |
| ) |
| |
| |
| @register_decomposition(aten._native_batch_norm_legit.default) |
| def _native_batch_norm_legit( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Tensor, |
| running_var: Tensor, |
| training: bool, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| output, save_mean, save_rstd, _, _ = native_batch_norm_helper( |
| input, weight, bias, running_mean, running_var, training, momentum, eps, False |
| ) |
| return output, save_mean, save_rstd |
| |
| |
| @register_decomposition(aten._native_batch_norm_legit.no_stats) |
| def _native_batch_norm_legit_no_stats( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| training: bool, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| output, save_mean, save_rstd, _, _ = native_batch_norm_helper( |
| input, weight, bias, None, None, training, momentum, eps, False |
| ) |
| return output, save_mean, save_rstd |
| |
| |
| @register_decomposition(aten._native_batch_norm_legit_functional.default) |
| def _native_batch_norm_legit_functional( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Tensor, |
| running_var: Tensor, |
| training: bool, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: |
| ( |
| output, |
| save_mean, |
| save_rstd, |
| new_running_mean, |
| new_running_var, |
| ) = native_batch_norm_helper( |
| input, weight, bias, running_mean, running_var, training, momentum, eps, True |
| ) |
| assert new_running_mean is not None, "new_running_mean should not be None" |
| assert new_running_var is not None, "new_running_var should not be None" |
| return output, save_mean, save_rstd, new_running_mean, new_running_var |
| |
| |
| def _get_batch_norm_reserve_tensor( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Tensor, |
| running_var: Tensor, |
| eps: float, |
| training: bool, |
| ) -> Tensor: |
| """ |
| Return a reserve tensor for batch norm, used only by cudnn to pass forward state to the |
| backward pass. This is needed for `_batch_norm_with_update` and `_batch_norm_no_update`, |
| which support a variety of backends including cudnn. We create this tensor here to get |
| the correct shape in the traced graph if we detect that will call the cudnn kernel, |
| and rely on DCE to avoid materializing this tensor. |
| """ |
| backend = torch._C._select_batch_norm_backend( # type: ignore[attr-defined] |
| input, weight, bias, running_mean, running_var, True, eps |
| ) |
| reserve_size = 0 |
| if backend == torch._C._BatchNormBackend.Cudnn: # type: ignore[attr-defined] |
| reserve_size = torch._C._get_cudnn_batch_norm_reserve_space_size(input, training) # type: ignore[attr-defined] |
| return torch.empty( |
| reserve_size, dtype=torch.uint8, layout=input.layout, device=input.device |
| ) |
| |
| |
| @register_decomposition(aten._batch_norm_with_update.default) |
| def _batch_norm_with_update( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Tensor, |
| running_var: Tensor, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: |
| output, save_mean, save_rstd, _, _ = native_batch_norm_helper( |
| input, |
| weight, |
| bias, |
| running_mean, |
| running_var, |
| True, # training |
| momentum, |
| eps, |
| False, # functional |
| ) |
| reserve = _get_batch_norm_reserve_tensor( |
| input, weight, bias, running_mean, running_var, eps, training=True |
| ) |
| return output, save_mean, save_rstd, reserve |
| |
| |
| @register_decomposition(aten._batch_norm_with_update_functional.default) |
| def _batch_norm_with_update_functional( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Tensor, |
| running_var: Tensor, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: |
| ( |
| output, |
| save_mean, |
| save_rstd, |
| new_rm, |
| new_rv, |
| ) = native_batch_norm_helper( |
| input, weight, bias, running_mean, running_var, True, momentum, eps, True |
| ) |
| reserve = _get_batch_norm_reserve_tensor( |
| input, weight, bias, running_mean, running_var, eps, training=True |
| ) |
| assert new_rm is not None, "new_running_mean should not be None" |
| assert new_rv is not None, "new_running_var should not be None" |
| return (output, save_mean, save_rstd, reserve, new_rm, new_rv) |
| |
| |
| @register_decomposition(aten._batch_norm_no_update.default) |
| def _batch_norm_no_update( |
| input: Tensor, |
| weight: Optional[Tensor], |
| bias: Optional[Tensor], |
| running_mean: Tensor, |
| running_var: Tensor, |
| momentum: float, |
| eps: float, |
| ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: |
| output, save_mean, save_rstd, _, _ = native_batch_norm_helper( |
| input, |
| weight, |
| bias, |
| running_mean, |
| running_var, |
| False, # training |
| momentum, |
| eps, |
| False, # functional |
| ) |
| reserve = _get_batch_norm_reserve_tensor( |
| input, weight, bias, running_mean, running_var, eps, training=False |
| ) |
| return output, save_mean, save_rstd, reserve |
| |
| |
| @register_decomposition(aten._fused_dropout) |
| @out_wrapper("out0", "out1") |
| @pw_cast_for_opmath |
| def _fused_dropout_decomposition(input, p, generator=None): |
| assert generator is None |
| mask = (torch.rand_like(input) < p).to(dtype=torch.uint8) |
| res = mask.type_as(input) * input * (1.0 / p) |
| return (res, mask) |
| |
| |
| @register_decomposition(aten._to_copy) |
| @out_wrapper() |
| def _to_copy( |
| x: Tensor, |
| *, |
| dtype: Optional[torch.dtype] = None, |
| layout=None, |
| device: Optional[torch.device] = None, |
| pin_memory: bool = False, |
| non_blocking: bool = False, |
| memory_format: Optional[torch.memory_format] = None, |
| ): |
| assert not layout or layout == torch.strided, "TODO" |
| assert not pin_memory, "TODO" |
| if device is None and dtype is None and memory_format is None: |
| return x.clone() |
| dtype_converted = False |
| |
| if device is not None and device != x.device: |
| # avoid conversions on cpu |
| if dtype is not None and device.type == "cpu": |
| x = torch._prims.convert_element_type(x, dtype) |
| dtype_converted = True |
| x = torch._prims.device_put(x, device) |
| |
| if dtype is not None and not dtype_converted: |
| x = torch._prims.convert_element_type(x, dtype) |
| dtype_converted = True |
| |
| if memory_format is not None: # no ref/prim for memory format |
| return torch.clone(x, memory_format=memory_format) |
| return x |
| |
| |
| # Questionable decompositions |
| # This is only valid if we're running the graph without autograd, such as if the backward pass has been traced. |
| # Note that this decomposition causes issues with in-place ops |
| @register_decomposition([aten.detach, aten.lift, aten.lift_fresh]) |
| @out_wrapper() |
| def nop_decomposition(x): |
| return aten.alias(x) |
| |
| |
| # Also register to the Autograd dispatch key, so this decomp can run above autograd. |
| # native_batch_norm needs to decompose into other ops before autograd. |
| @aten.cudnn_batch_norm.default.py_impl(DispatchKey.Autograd) |
| @register_decomposition(aten.cudnn_batch_norm) |
| @out_wrapper("out0", "out1", "out2", "out3") |
| def cudnn_batch_norm( |
| input: Tensor, |
| weight: Tensor, |
| bias: Optional[Tensor], |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| training: bool, |
| exponential_average_factor: float, |
| epsilon: float, |
| ): |
| a, b, c = aten.native_batch_norm( |
| input, |
| weight, |
| bias, |
| running_mean, |
| running_var, |
| training, |
| exponential_average_factor, |
| epsilon, |
| ) |
| # Cudnn return running mean and variance when training is True |
| if training: |
| return (a, b, c, input.new_zeros((0,), dtype=torch.uint8)) |
| return ( |
| a, |
| weight.new_zeros((0,)), |
| weight.new_zeros((0,)), |
| input.new_zeros((0,), dtype=torch.uint8), |
| ) |
| |
| |
| def _broadcast_batch_norm_backward(x, broadcast_mask): |
| for axis, mask in enumerate(broadcast_mask): |
| if mask == 1 and not (axis < x.ndim and x.shape[axis] == broadcast_mask[axis]): |
| x = x.unsqueeze(axis) |
| return x |
| |
| |
| @register_decomposition(aten.batch_norm_backward.default) |
| def batch_norm_backward( |
| grad_out: Tensor, |
| input: Tensor, |
| weight: Optional[Tensor], |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| save_mean: Optional[Tensor], |
| save_invstd: Optional[Tensor], |
| train: bool, |
| eps: float, |
| output_mask: List[bool], |
| reserve: Tensor, |
| ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: |
| return native_batch_norm_backward( |
| grad_out, |
| input, |
| weight, |
| running_mean, |
| running_var, |
| save_mean, |
| save_invstd, |
| train, |
| eps, |
| output_mask, |
| ) |
| |
| |
| @register_decomposition(aten.native_batch_norm_backward.default) |
| def native_batch_norm_backward( |
| grad_out: Tensor, |
| input: Tensor, |
| weight: Optional[Tensor], |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| save_mean: Optional[Tensor], |
| save_invstd: Optional[Tensor], |
| train: bool, |
| eps: float, |
| output_mask: List[bool], |
| ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: |
| input_dtype = input.dtype |
| if weight is not None: |
| weight_dtype = weight.dtype |
| else: |
| weight_dtype = input_dtype |
| computation_dtype = utils.get_computation_dtype(input.dtype) |
| ( |
| grad_out_cast, |
| input_cast, |
| weight_cast, |
| running_mean_cast, |
| running_var_cast, |
| save_mean_cast, |
| save_invstd_cast, |
| ) = ( |
| x.to(computation_dtype) if x is not None else x |
| for x in ( |
| grad_out, |
| input, |
| weight, |
| running_mean, |
| running_var, |
| save_mean, |
| save_invstd, |
| ) |
| ) |
| input_shape = input.shape |
| input_rank = input.dim() |
| assert input_rank >= 2, "rank of the input must be at least 2" |
| |
| axis = 1 |
| num_features = prod(list(input_shape)) / input_shape[axis] |
| mean = save_mean_cast |
| invstd = save_invstd_cast |
| if train: |
| assert save_mean_cast is not None and save_invstd_cast is not None |
| else: |
| assert running_mean_cast is not None and running_var_cast is not None |
| mean = running_mean_cast |
| invstd = torch.rsqrt(running_var_cast + eps) |
| |
| broadcast_mask: List[int] = [1] * input_rank |
| broadcast_mask[axis] = input_shape[axis] |
| |
| reduction_axes: List[int] = [] |
| for i in range(input_rank): |
| if i != axis: |
| reduction_axes.append(i) |
| |
| mean = _broadcast_batch_norm_backward(mean, broadcast_mask) # type: ignore[arg-type] |
| norm = 1.0 / num_features |
| grad_output_sum = torch.sum(grad_out_cast, reduction_axes) # type: ignore[arg-type] |
| dot_p = torch.sum(grad_out_cast * (input_cast - mean), reduction_axes) # type: ignore[operator] |
| |
| grad_mean = _broadcast_batch_norm_backward(grad_output_sum * norm, broadcast_mask) |
| proj_scale = _broadcast_batch_norm_backward(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask) # type: ignore[operator] |
| |
| if weight_cast is None: |
| grad_scale = _broadcast_batch_norm_backward(invstd, broadcast_mask) * 1.0 # type: ignore[arg-type] |
| else: |
| grad_scale = _broadcast_batch_norm_backward( |
| invstd * weight_cast, broadcast_mask |
| ) |
| |
| if train: |
| proj = (input_cast - mean) * proj_scale # type: ignore[operator] |
| grad_input = ((grad_out_cast - proj) - grad_mean) * grad_scale |
| else: |
| grad_input = grad_out_cast * grad_scale |
| |
| if output_mask[1]: |
| grad_weight = dot_p * invstd |
| else: |
| grad_weight = None # "None" doesn't work with vjp, should use zeros for vjp |
| |
| if output_mask[2]: |
| grad_bias = grad_output_sum |
| else: |
| grad_bias = None # "None" doesn't work with vjp, should use zeros for vjp |
| |
| return ( |
| grad_input.to(input_dtype), |
| _maybe_cast(grad_weight, weight_dtype), |
| _maybe_cast(grad_bias, weight_dtype), |
| ) |
| |
| |
| # out_wrapper currently does not allow optional outputs |
| @register_decomposition(aten.native_batch_norm_backward.out) |
| def native_batch_norm_backward_out( |
| grad_out: Tensor, |
| input: Tensor, |
| weight: Optional[Tensor], |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| save_mean: Optional[Tensor], |
| save_invstd: Optional[Tensor], |
| train: bool, |
| eps: float, |
| output_mask: List[bool], |
| *, |
| out0: torch.Tensor, |
| out1: torch.Tensor, |
| out2: torch.Tensor, |
| ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: |
| result = native_batch_norm_backward( |
| grad_out, |
| input, |
| weight, |
| running_mean, |
| running_var, |
| save_mean, |
| save_invstd, |
| train, |
| eps, |
| output_mask, |
| ) |
| grad_input = (out0, out1, out2) |
| for i, r in enumerate(result): |
| if r is not None: |
| _maybe_resize_out(grad_input[i], r.shape) |
| _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True) |
| |
| return grad_input |
| |
| |
| @register_decomposition(aten.cudnn_batch_norm_backward) |
| @out_wrapper("out0", "out1", "out2") |
| def cudnn_batch_norm_backward( |
| input: Tensor, |
| grad_output: Tensor, |
| weight: Tensor, |
| running_mean: Optional[Tensor], |
| running_var: Optional[Tensor], |
| save_mean: Optional[Tensor], |
| save_var: Optional[Tensor], |
| epsilon: float, |
| reserveSpace: Tensor, |
| ): |
| return aten.native_batch_norm_backward( |
| grad_output, |
| input, |
| weight, |
| running_mean, |
| running_var, |
| save_mean, |
| save_var, |
| True, |
| epsilon, |
| [True, True, True], |
| ) |
| |
| |
| @register_decomposition(aten._adaptive_avg_pool2d) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def adaptive_avg_pool2d(input: Tensor, output_size: Tuple[int, int]): |
| # Preconditions |
| device = input.device |
| shape = input.shape |
| ndim = len(shape) |
| torch._check( |
| ndim in (3, 4), |
| lambda: f"adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got {ndim}", |
| ) |
| for d in input.shape[-2:]: |
| torch._check( |
| d != 0, |
| lambda: "adaptive_avg_pool2d(): Expected input to have non-zero size for " |
| f"non-batch dimensions, but input has shape {tuple(shape)}.", |
| ) |
| |
| # Optimisation (we should also do this in the kernel implementation) |
| if shape[-2] % output_size[-2] == 0 and shape[-1] % output_size[-1] == 0: |
| stride = tuple(i // o for i, o in zip(shape[-2:], output_size)) |
| kernel = tuple( |
| i - (o - 1) * s for i, o, s in zip(shape[-2:], output_size, stride) |
| ) |
| return torch.nn.functional.avg_pool2d(input, kernel, stride) |
| |
| def start_index(a, b, c): |
| return torch.div(a * c, b, rounding_mode="trunc") |
| |
| def end_index(a, b, c): |
| return torch.div((a + 1) * c + b - 1, b, rounding_mode="trunc") |
| |
| def compute_idx(in_size, out_size): |
| orange = torch.arange(out_size, device=device, dtype=torch.int64) |
| i0 = start_index(orange, out_size, in_size) |
| # Let length = end_index - start_index, i.e. the length of the pooling kernels |
| # length.max() can be computed analytically as follows: |
| maxlength = in_size // out_size + 1 |
| in_size_mod = in_size % out_size |
| # adaptive = True iff there are kernels with different lengths |
| adaptive = not (in_size_mod == 0 or out_size % in_size_mod == 0) |
| if adaptive: |
| maxlength += 1 |
| elif in_size_mod == 0: |
| maxlength -= 1 |
| |
| range_max = torch.arange(maxlength, device=device, dtype=torch.int64) |
| idx = i0.unsqueeze(-1) + range_max |
| if adaptive: |
| # Need to clamp to avoid accessing out-of-bounds memory |
| # TODO make minimum accept scalars |
| maxval = torch.scalar_tensor( |
| in_size - 1, dtype=idx.dtype, device=idx.device |
| ) |
| idx = torch.minimum(idx, maxval) |
| |
| # Compute the length |
| i1 = end_index(orange, out_size, in_size) |
| length = i1 - i0 |
| else: |
| length = maxlength |
| return idx, length, range_max, adaptive |
| |
| # length is not None if it's constant, otherwise we'll need to compute it |
| idxh, length_h, range_max_h, adaptive_h = compute_idx(shape[-2], output_size[-2]) |
| idxw, length_w, range_max_w, adaptive_w = compute_idx(shape[-1], output_size[-1]) |
| |
| vals = input[..., _unsqueeze_to_dim(idxh, 4), idxw] |
| # Shortcut for the simpler case |
| if not adaptive_h and not adaptive_w: |
| return torch.mean(vals, dim=(-3, -1)) |
| |
| def maybe_mask(vals, length, range_max, adaptive, dim): |
| if isinstance(length, IntLike): |
| return vals, length |
| else: |
| # zero-out the things we didn't really want to select |
| assert dim < 0 |
| # hack |
| mask = range_max >= length.unsqueeze(-1) |
| if dim == -2: |
| mask = _unsqueeze_to_dim(mask, 4) |
| vals = torch.masked_fill(vals, mask, 0.0) |
| # Compute the length of each window |
| length = _unsqueeze_to_dim(length, -dim) |
| return vals, length |
| |
| vals, length_h = maybe_mask( |
| vals, length_h, range_max_h, adaptive=adaptive_h, dim=-2 |
| ) |
| vals, length_w = maybe_mask( |
| vals, length_w, range_max_w, adaptive=adaptive_w, dim=-1 |
| ) |
| |
| # We unroll the sum as we assume that the kernels are going to be small |
| ret = None |
| for i, j in product(range(vals.shape[-3]), range(vals.shape[-1])): |
| if ret is None: |
| ret = vals[..., i, :, j] |
| else: |
| ret = ret + vals[..., i, :, j] |
| return ret / (length_h * length_w) |
| |
| |
| @register_decomposition(aten.index_add_) |
| def index_add_( |
| x: TensorLike, |
| dim: int, |
| index: TensorLike, |
| tensor: TensorLike, |
| *, |
| alpha: NumberType = 1, |
| ): |
| return _index_add(x, dim, index, tensor, inplace=True, alpha=alpha) |
| |
| |
| @register_decomposition(aten.index_add) |
| @out_wrapper() |
| def index_add( |
| x: TensorLike, |
| dim: int, |
| index: TensorLike, |
| tensor: TensorLike, |
| *, |
| alpha: NumberType = 1, |
| ): |
| return _index_add(x, dim, index, tensor, inplace=False, alpha=alpha) |
| |
| |
| def _index_add( |
| x: TensorLike, |
| dim: int, |
| index: TensorLike, |
| tensor: TensorLike, |
| *, |
| inplace: bool, |
| alpha: NumberType = 1, |
| ): |
| dim = utils.canonicalize_dims(x.ndim, dim) |
| torch._check( |
| index.ndim <= 1, |
| lambda: f"Index should have dimension 1 or 0 (got {index.ndim})", |
| ) |
| index_size = index.size(0) if index.ndim == 1 else 1 |
| tensor_size = tensor.size(dim) if tensor.ndim > 0 else 1 |
| torch._check( |
| tensor_size == index_size, |
| lambda: f"Number of indices ({index_size}) should be equal to tensor.size(dim) ({tensor_size}), for {dim=}", |
| ) |
| if alpha != 1: |
| python_type = utils.dtype_to_type(x.dtype) |
| torch._check( |
| python_type == bool |
| or utils.is_weakly_lesser_type(type(alpha), python_type), |
| lambda: f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!", |
| ) |
| tensor = tensor * alpha |
| # Treat scalars as elements of \R^1 |
| zero_dim = x.ndim == 0 |
| x1 = x.unsqueeze(0) if zero_dim else x |
| idx = (None,) * dim + (index,) |
| index_put = aten.index_put_ if inplace else aten.index_put |
| out = index_put(x1, idx, tensor, accumulate=True) |
| if inplace: |
| return x |
| else: |
| return out.squeeze(0) if zero_dim else out.contiguous() |
| |
| |
| @register_decomposition(aten.pad_sequence.default) |
| @aten.pad_sequence.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| def pad_sequence(sequences, batch_first=False, padding_value=0.0): |
| torch._check(len(sequences) > 0, lambda: "received an empty list of sequences") |
| sequences_size = len(sequences) |
| max_size = sequences[0].size() |
| trailing_dims = max_size[1:] |
| max_len = max(x.size(0) for x in sequences) |
| if batch_first: |
| out_dims = (sequences_size, max_len) |
| else: |
| out_dims = (max_len, sequences_size) |
| out_dims = out_dims + trailing_dims |
| out = sequences[0].new_full(out_dims, padding_value) |
| dim_paddings = (0, 0) * len(trailing_dims) |
| for i in range(sequences_size): |
| currseq = sequences[i] |
| row = aten.constant_pad_nd( |
| currseq, dim_paddings + (0, max_len - currseq.size(0)), padding_value |
| ) |
| if batch_first: |
| out = aten.select_scatter(out, row, dim=0, index=i) |
| else: |
| out = aten.select_scatter(out, row, dim=1, index=i) |
| return out |
| |
| |
| @register_decomposition(aten.index_copy_) |
| def index_copy_(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike): |
| return _index_copy(x, dim, index, tensor, inplace=True) |
| |
| |
| @register_decomposition(aten.index_copy) |
| @out_wrapper() |
| def index_copy(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike): |
| return _index_copy(x, dim, index, tensor, inplace=False) |
| |
| |
| def _index_copy( |
| x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike, *, inplace: bool |
| ): |
| dim = utils.canonicalize_dims(x.ndim, dim) |
| torch._check( |
| index.ndim <= 1, |
| lambda: f"Index should have dimension 1 or 0 (got {index.ndim})", |
| ) |
| # Treat scalars as elements of \R^1 |
| zero_dim = x.ndim == 0 |
| x1 = x.unsqueeze(0) if zero_dim else x |
| index = index.unsqueeze(0) if index.ndim == 0 else index |
| idx = (None,) * dim + (index,) |
| index_put = aten.index_put_ if inplace else aten.index_put |
| out = index_put(x1, idx, tensor) |
| if inplace: |
| return x |
| else: |
| return out.squeeze(0) if zero_dim else out.contiguous() |
| |
| |
| # nb: Should use acc_t, not op_math |
| @register_decomposition(aten.log_sigmoid_forward) |
| @out_wrapper("output", "buffer") |
| @pw_cast_for_opmath |
| def log_sigmoid_forward(self: Tensor) -> Tuple[Tensor, Tensor]: |
| min = torch.minimum(self.new_zeros(()), self) |
| z = torch.exp(-torch.abs(self)) |
| if self.is_cuda: |
| buffer = self.new_zeros((0,)) |
| else: |
| buffer = z |
| return min - torch.log1p(z), buffer |
| |
| |
| @register_decomposition(aten.uniform) |
| @out_wrapper() |
| def uniform( |
| x: Tensor, |
| low: Union[bool, int, float] = 0.0, |
| high: Union[bool, int, float] = 1.0, |
| generator: Optional[torch.Generator] = None, |
| ): |
| return prims._uniform_helper( |
| x.shape, |
| low=sym_float(low), |
| high=sym_float(high), |
| dtype=x.dtype, |
| device=x.device, |
| generator=generator, |
| ) |
| |
| |
| @register_decomposition(aten.uniform_) |
| def uniform_(self, low=0, high=1, generator=None): |
| return self.copy_(uniform(self, low, high, generator)) |
| |
| |
| # aten/src/ATen/native/UpSample.cpp compute_output_size |
| def upsample_compute_output_size(input_size, output_size, scale_factors): |
| spatial_dimensions = len(input_size) - 2 |
| if output_size is not None: |
| torch._check( |
| scale_factors is None, |
| lambda: "Must specify exactly one of output_size and scale_factors", |
| ) |
| torch._check(len(output_size) == spatial_dimensions, lambda: "") |
| return output_size |
| if scale_factors is not None: |
| # NB: this isn't necessary lol |
| torch._check( |
| output_size is None, |
| lambda: "Must specify exactly one of output_size and scale_factors", |
| ) |
| torch._check(len(scale_factors) == spatial_dimensions, lambda: "") |
| output_size = [] |
| for i, s in enumerate(scale_factors): |
| if int(s) == s: |
| output_size.append(input_size[i + 2] * int(s)) |
| else: |
| output_size.append(sym_int(input_size[i + 2] * s)) |
| return output_size |
| torch._check( |
| False, lambda: "Must specify exactly one of output_size and scale_factors" |
| ) |
| |
| |
| def get_scale_value(scales, idx): |
| if scales is None: |
| return None |
| return scales[idx] |
| |
| |
| @register_decomposition(aten.upsample_nearest1d.vec) |
| @register_decomposition(aten.upsample_nearest2d.vec) |
| @register_decomposition(aten.upsample_nearest3d.vec) |
| @aten.upsample_nearest1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_nearest1d.vec.py_impl(DispatchKey.Autograd) |
| @aten.upsample_nearest2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_nearest2d.vec.py_impl(DispatchKey.Autograd) |
| @aten.upsample_nearest3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_nearest3d.vec.py_impl(DispatchKey.Autograd) |
| def _upsample_nearest_vec( |
| input: Tensor, |
| output_size: Optional[List[int]], |
| scale_factors: Optional[List[float]], |
| ) -> Tensor: |
| osize = upsample_compute_output_size(input.size(), output_size, scale_factors) |
| scales = ( |
| scale_factors if scale_factors else [None] * len(osize) # type: ignore[list-item] |
| ) |
| return _upsample_nearest(input, osize, scales) |
| |
| |
| @register_decomposition(aten._upsample_nearest_exact1d.vec) |
| @register_decomposition(aten._upsample_nearest_exact2d.vec) |
| @register_decomposition(aten._upsample_nearest_exact3d.vec) |
| @aten._upsample_nearest_exact1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_nearest_exact1d.vec.py_impl(DispatchKey.Autograd) |
| @aten._upsample_nearest_exact2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_nearest_exact2d.vec.py_impl(DispatchKey.Autograd) |
| @aten._upsample_nearest_exact3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_nearest_exact3d.vec.py_impl(DispatchKey.Autograd) |
| def _upsample_nearest_exact_vec( |
| input: Tensor, |
| output_size: Optional[List[int]], |
| scale_factors: Optional[List[float]], |
| ) -> Tensor: |
| osize = upsample_compute_output_size(input.size(), output_size, scale_factors) |
| scales = ( |
| scale_factors if scale_factors else [None] * len(osize) # type: ignore[list-item] |
| ) |
| return _upsample_nearest(input, osize, scales, exact=True) |
| |
| |
| def _compute_upsample_nearest_indices(input, output_size, scales, exact=False): |
| # For each dim in output_size, compute the set of input indices used |
| # to produce the upsampled output. |
| indices = [] |
| num_spatial_dims = len(output_size) |
| offset = 0.5 if exact else 0.0 |
| |
| for d in range(num_spatial_dims): |
| # Math matches aten/src/ATen/native/cpu/UpSampleKernel.cpp |
| # |
| # Indices are computed as following: |
| # scale = isize / osize |
| # Case: exact=False |
| # input_index = floor(output_index * scale) |
| # Same as OpenCV INTER_NEAREST |
| # |
| # Case: exact=False |
| # index_f32 = (output_index + 0.5) * scale - 0.5 |
| # input_index = round(index_f32) |
| # Same as Pillow and Scikit-Image/Scipy ndi.zoom |
| osize = output_size[d] |
| isize = input.shape[-num_spatial_dims + d] |
| scale = isize / (isize * scales[d]) if scales[d] is not None else isize / osize |
| |
| output_indices = torch.arange(osize, dtype=torch.float32, device=input.device) |
| input_indices = ((output_indices + offset) * scale).to(torch.int64) |
| for _ in range(num_spatial_dims - 1 - d): |
| input_indices = input_indices.unsqueeze(-1) |
| indices.append(input_indices) |
| return indices |
| |
| |
| @register_decomposition([aten.upsample_nearest1d.default, aten.upsample_nearest1d.out]) |
| @aten.upsample_nearest1d.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_nearest1d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper(preserve_memory_format=True, exact_dtype=True) |
| def upsample_nearest1d( |
| input: Tensor, |
| output_size: List[int], |
| scales: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_nearest(input, output_size, [scales]) |
| |
| |
| @register_decomposition( |
| [aten._upsample_nearest_exact1d.default, aten._upsample_nearest_exact1d.out] |
| ) |
| @aten._upsample_nearest_exact1d.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_nearest_exact1d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper(preserve_memory_format=True, exact_dtype=True) |
| def upsample_nearest_exact1d( |
| input: Tensor, |
| output_size: List[int], |
| scales: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_nearest(input, output_size, [scales], exact=True) |
| |
| |
| @register_decomposition([aten.upsample_nearest2d.default, aten.upsample_nearest2d.out]) |
| @aten.upsample_nearest2d.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_nearest2d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper(preserve_memory_format=True, exact_dtype=True) |
| def upsample_nearest2d( |
| input: Tensor, |
| output_size: List[int], |
| scales_h: Optional[float] = None, |
| scales_w: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_nearest(input, output_size, [scales_h, scales_w]) |
| |
| |
| @register_decomposition( |
| [aten._upsample_nearest_exact2d.default, aten._upsample_nearest_exact2d.out] |
| ) |
| @aten._upsample_nearest_exact2d.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_nearest_exact2d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper(preserve_memory_format=True, exact_dtype=True) |
| def _upsample_nearest_exact2d( |
| input: Tensor, |
| output_size: List[int], |
| scales_h: Optional[float] = None, |
| scales_w: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_nearest(input, output_size, [scales_h, scales_w], exact=True) |
| |
| |
| @register_decomposition([aten.upsample_nearest3d.default, aten.upsample_nearest3d.out]) |
| @aten.upsample_nearest3d.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_nearest3d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper(preserve_memory_format=True, exact_dtype=True) |
| def upsample_nearest3d( |
| input: Tensor, |
| output_size: List[int], |
| scales_d: Optional[float] = None, |
| scales_h: Optional[float] = None, |
| scales_w: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_nearest(input, output_size, [scales_d, scales_h, scales_w]) |
| |
| |
| @register_decomposition( |
| [aten._upsample_nearest_exact3d.default, aten._upsample_nearest_exact3d.out] |
| ) |
| @aten._upsample_nearest_exact3d.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_nearest_exact3d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper(preserve_memory_format=True, exact_dtype=True) |
| def _upsample_nearest_exact3d( |
| input: Tensor, |
| output_size: List[int], |
| scales_d: Optional[float] = None, |
| scales_h: Optional[float] = None, |
| scales_w: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_nearest( |
| input, output_size, [scales_d, scales_h, scales_w], exact=True |
| ) |
| |
| |
| @pw_cast_for_opmath |
| def _upsample_nearest( |
| input: Tensor, |
| output_size: List[int], |
| scales: List[Optional[float]], |
| exact: bool = False, |
| ) -> Tensor: |
| spatial_indices = _compute_upsample_nearest_indices( |
| input, output_size, scales, exact=exact |
| ) |
| |
| indices = [None, None] + spatial_indices |
| result = aten._unsafe_index(input, indices) |
| |
| if result.ndim == 4: |
| # convert output to correct memory format, if necessary |
| memory_format = utils.suggest_memory_format(input) |
| |
| # following "heuristic: only use channels_last path when it's faster than the contiguous path" |
| n_channels = input.shape[1] |
| if input.device.type == "cuda" and n_channels < 4: |
| memory_format = torch.contiguous_format |
| |
| result = result.contiguous(memory_format=memory_format) |
| return result |
| |
| |
| def gather_params(params, has_biases, has_projections): |
| if has_biases and has_projections: |
| group_size = 5 |
| elif has_biases: |
| group_size = 4 |
| elif has_projections: |
| group_size = 3 |
| else: |
| group_size = 2 |
| |
| assert len(params) % group_size == 0, len(params) |
| return [ |
| tuple(params[i : i + group_size]) for i in range(0, len(params), group_size) |
| ] |
| |
| |
| def params_hiddens(params, hiddens, i, bidirectional): |
| if bidirectional: |
| cur_params, cur_hidden = params[2 * i], hiddens[2 * i] |
| bidir_params, bidir_hidden = params[2 * i + 1], hiddens[2 * i + 1] |
| else: |
| cur_params, cur_hidden = params[i], hiddens[i] |
| bidir_params, bidir_hidden = None, None |
| |
| return cur_params, cur_hidden, bidir_params, bidir_hidden |
| |
| |
| def update_hidden_for_packed(cur_hidden, last_batch_size, batch_size, hiddens): |
| assert last_batch_size > batch_size |
| hiddens.append(cur_hidden.narrow(0, batch_size, last_batch_size - batch_size)) |
| return cur_hidden.narrow(0, 0, batch_size) |
| |
| |
| def update_hidden_for_packed_reverse( |
| cur_hidden, last_batch_size, batch_size, inp_hidden |
| ): |
| if last_batch_size == batch_size: |
| return cur_hidden |
| assert last_batch_size < batch_size |
| return torch.concat( |
| ( |
| cur_hidden, |
| inp_hidden.narrow(0, last_batch_size, batch_size - last_batch_size), |
| ) |
| ) |
| |
| |
| def one_layer_rnn_data( |
| inp, hidden, params, has_biases, hidden_fn, batch_sizes, reverse=False |
| ): |
| ih_weight = params[0] |
| hh_weight = params[1] |
| ih_bias = params[2] if has_biases else None |
| hh_bias = params[3] if has_biases else None |
| |
| step_output = [] |
| hiddens: List[torch.Tensor] = [] |
| |
| last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0] |
| cur_hidden = hidden.narrow(0, 0, last_batch_size) |
| split_inp = torch.split(inp, list(batch_sizes)) |
| if reverse: |
| split_inp = split_inp[::-1] |
| for inp in split_inp: |
| i = inp.shape[0] |
| |
| if last_batch_size == i: |
| pass # don't update cur_hidden |
| # this will only happen when reverse=False, since batch sizes are sorted largest -> smallest |
| elif reverse: |
| cur_hidden = update_hidden_for_packed_reverse( |
| cur_hidden, last_batch_size, i, hidden |
| ) |
| else: |
| cur_hidden = update_hidden_for_packed( |
| cur_hidden, last_batch_size, i, hiddens |
| ) |
| |
| cur_hidden = hidden_fn(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias) |
| last_batch_size = i |
| step_output.append(cur_hidden) |
| |
| if reverse: |
| step_output.reverse() |
| else: |
| hiddens.append(cur_hidden) |
| hiddens.reverse() |
| |
| out = torch.cat(step_output, 0) |
| hidden_out = torch.cat(hiddens, 0) if not reverse else cur_hidden |
| return out, hidden_out |
| |
| |
| def rnn_cell(nonlinearity): |
| def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): |
| return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i) |
| |
| return inner |
| |
| |
| def rnn_cell_data(nonlinearity): |
| def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): |
| i = F.linear(i, ih_weight, ih_bias) |
| return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i) |
| |
| return inner |
| |
| |
| def one_layer_rnn(inp, hidden, params, has_biases, hidden_fn, reverse=False): |
| ih_weight = params[0] |
| hh_weight = params[1] |
| ih_bias = params[2] if has_biases else None |
| hh_bias = params[3] if has_biases else None |
| |
| precomputed_input = F.linear(inp, ih_weight, ih_bias) |
| precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input |
| cur_hidden = hidden.unsqueeze(0) |
| step_output = [] |
| for i in precomputed_input: |
| cur_hidden = hidden_fn(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias) |
| step_output.append(cur_hidden) |
| |
| if reverse: |
| step_output.reverse() |
| |
| out = torch.cat(step_output, 0) |
| |
| return out, cur_hidden.squeeze(0) |
| |
| |
| def mkldnn_one_layer_lstm(inp, hidden, params, has_biases, reverse=False): |
| w0 = params[0] |
| w1 = params[1] |
| if has_biases: |
| w2 = params[2] |
| w3 = params[3] |
| else: |
| w2 = torch.zeros(w0.size()) |
| w3 = torch.zeros(w1.size()) |
| |
| hx = hidden[0].unsqueeze(0) |
| cx = hidden[1].unsqueeze(0) |
| |
| batch_sizes: List[int] = [] |
| mode = 2 # third_party/ideep/include/ideep/abstract_types.hpp: ideep::rnn_kind::LSTM = 2 |
| hidden_size = hx.size(2) |
| num_layers = 1 |
| |
| # _rnn_helper already handles bidirectional and batch_first so we hard-code them to False here |
| bidirectional = False |
| batch_first = False |
| |
| train = False |
| # If batch_first, inp has been permuted in _rnn_helper. Convert to contiguous here. |
| # Same as aten/src/ATen/native/mkldnn/RNN.cpp: mkldnn_rnn: input = input.contiguous(); |
| inp = inp.contiguous() |
| hx = hx.contiguous() |
| cx = cx.contiguous() |
| outputs = torch.ops.aten.mkldnn_rnn_layer.default( |
| inp, |
| w0, |
| w1, |
| w2, |
| w3, |
| hx, |
| cx, |
| reverse, |
| batch_sizes, |
| mode, |
| hidden_size, |
| num_layers, |
| has_biases, |
| bidirectional, |
| batch_first, |
| train, |
| ) |
| y, hy, cy = outputs[0], outputs[1], outputs[2] |
| return y, (hy.squeeze(0), cy.squeeze(0)) |
| |
| |
| def _rnn_helper( |
| input, |
| hidden, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| layer_fn, |
| ): |
| input = input.transpose(0, 1) if batch_first else input |
| final_hiddens = [] |
| |
| for i in range(num_layers): |
| cur_params, cur_hidden, bidir_params, bidir_hidden = params_hiddens( |
| params, hidden, i, bidirectional |
| ) |
| dropout = dropout if (train and num_layers < i - 1) else 0.0 |
| fwd_inp, fwd_hidden = layer_fn(input, cur_hidden, cur_params, has_biases) |
| final_hiddens.append(fwd_hidden) |
| |
| if bidirectional: |
| bwd_inp, bwd_hidden = layer_fn( |
| input, bidir_hidden, bidir_params, has_biases, reverse=True |
| ) |
| final_hiddens.append(bwd_hidden) |
| |
| if bidirectional: |
| input = torch.cat([fwd_inp, bwd_inp], fwd_inp.dim() - 1) # type: ignore[possibly-undefined] |
| else: |
| input = fwd_inp |
| |
| if dropout != 0 and train and i < num_layers - 1: |
| input = torch.dropout(input, dropout, train=True) |
| |
| input = input.transpose(0, 1) if batch_first else input |
| return input, final_hiddens |
| |
| |
| @register_decomposition(aten.rnn_tanh.input) |
| @aten.rnn_tanh.input.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.rnn_tanh.input.py_impl(DispatchKey.Autograd) |
| def rnn_tanh_input( |
| input, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| ): |
| hidden = hx.unbind(0) |
| params = gather_params(params, has_biases, False) |
| out, final_hiddens = _rnn_helper( |
| input, |
| hidden, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| partial(one_layer_rnn, hidden_fn=rnn_cell(torch.tanh)), |
| ) |
| return out, torch.stack(final_hiddens, 0) |
| |
| |
| @register_decomposition(aten.rnn_relu.input) |
| @aten.rnn_relu.input.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.rnn_relu.input.py_impl(DispatchKey.Autograd) |
| def rnn_relu_input( |
| input, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| ): |
| hidden = hx.unbind(0) |
| params = gather_params(params, has_biases, False) |
| out, final_hiddens = _rnn_helper( |
| input, |
| hidden, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| partial(one_layer_rnn, hidden_fn=rnn_cell(torch.relu)), |
| ) |
| return out, torch.stack(final_hiddens, 0) |
| |
| |
| @register_decomposition(aten.rnn_relu.data) |
| @aten.rnn_relu.data.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.rnn_relu.data.py_impl(DispatchKey.Autograd) |
| def rnn_relu_data( |
| data, |
| batch_sizes, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| ): |
| hidden = hx.unbind(0) |
| params = gather_params(params, has_biases, False) |
| out, final_hiddens = _rnn_helper( |
| data, |
| hidden, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| False, |
| partial( |
| one_layer_rnn_data, |
| batch_sizes=batch_sizes, |
| hidden_fn=rnn_cell_data(torch.relu), |
| ), |
| ) |
| return out, torch.stack(final_hiddens, 0) |
| |
| |
| @register_decomposition(aten.rnn_tanh.data) |
| @aten.rnn_tanh.data.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.rnn_tanh.data.py_impl(DispatchKey.Autograd) |
| def rnn_tanh_data( |
| data, |
| batch_sizes, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| ): |
| hidden = hx.unbind(0) |
| params = gather_params(params, has_biases, False) |
| out, final_hiddens = _rnn_helper( |
| data, |
| hidden, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| False, |
| partial( |
| one_layer_rnn_data, |
| batch_sizes=batch_sizes, |
| hidden_fn=rnn_cell_data(torch.tanh), |
| ), |
| ) |
| return out, torch.stack(final_hiddens, 0) |
| |
| |
| def lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim): |
| gates = F.linear(hx, hh_weight, hh_bias) + inp |
| chunked_gates = gates.chunk(4, chunk_dim) |
| in_gate = chunked_gates[0].sigmoid() |
| forget_gate = chunked_gates[1].sigmoid() |
| cell_gate = chunked_gates[2].tanh() |
| out_gate = chunked_gates[3].sigmoid() |
| cy = forget_gate * cx + (in_gate * cell_gate) |
| hy = out_gate * cy.tanh() |
| hy = hy if hr_weight is None else F.linear(hy, hr_weight, None) |
| |
| return hy, cy |
| |
| |
| def one_layer_lstm(inp, hidden, params, has_biases, reverse=False): |
| ih_weight = params[0] |
| hh_weight = params[1] |
| ih_bias = params[2] if has_biases else None |
| hh_bias = params[3] if has_biases else None |
| hr_weight = ( |
| params[4] if len(params) == 5 else params[2] if len(params) == 3 else None |
| ) |
| |
| hx = hidden[0].unsqueeze(0) |
| cx = hidden[1].unsqueeze(0) |
| |
| precomputed_input = F.linear(inp, ih_weight, ih_bias) |
| precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input |
| step_output = [] |
| for inp in precomputed_input: |
| hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=2) |
| step_output.append(hx) |
| |
| if reverse: |
| step_output.reverse() |
| |
| out = torch.cat(step_output, 0) |
| |
| return out, (hx.squeeze(1), cx.squeeze(1)) |
| |
| |
| def one_layer_lstm_data(inp, hidden, params, has_biases, batch_sizes, reverse=False): |
| ih_weight = params[0] |
| hh_weight = params[1] |
| ih_bias = params[2] if has_biases else None |
| hh_bias = params[3] if has_biases else None |
| hr_weight = ( |
| params[4] if len(params) == 5 else params[2] if len(params) == 3 else None |
| ) |
| |
| step_output = [] |
| hiddens = [] |
| |
| last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0] |
| split_inp = torch.split(inp, list(batch_sizes)) |
| if reverse: |
| split_inp = split_inp[::-1] |
| |
| orig_hx = hidden[0] |
| orig_cx = hidden[1] |
| hx, cx = orig_hx.narrow(0, 0, last_batch_size), orig_cx.narrow( |
| 0, 0, last_batch_size |
| ) |
| |
| for inp in split_inp: |
| i = inp.shape[0] |
| inp = F.linear(inp, ih_weight, ih_bias) |
| |
| # this will only happen when reverse=False, since batch sizes are sorted largest -> smallest |
| if i < last_batch_size: |
| hiddens.append( |
| ( |
| hx.narrow(0, i, last_batch_size - i), |
| cx.narrow(0, i, last_batch_size - i), |
| ) |
| ) |
| hx, cx = hx.narrow(0, 0, i), cx.narrow(0, 0, i) |
| |
| # this will only happen when reverse=True |
| if i > last_batch_size: |
| hx = torch.concat( |
| (hx, orig_hx.narrow(0, last_batch_size, i - last_batch_size)), 0 |
| ) |
| cx = torch.concat( |
| (cx, orig_cx.narrow(0, last_batch_size, i - last_batch_size)), 0 |
| ) |
| |
| hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=1) |
| last_batch_size = i |
| step_output.append(hx) |
| |
| if reverse: |
| step_output.reverse() |
| hidden_out = (hx, cx) |
| else: |
| hiddens.append((hx, cx)) |
| hiddens.reverse() |
| hidden0, hidden1 = zip(*hiddens) |
| hidden_out = torch.cat(hidden0, 0), torch.cat(hidden1, 0) |
| |
| out = torch.cat(step_output, 0) |
| return out, hidden_out |
| |
| |
| def select_one_layer_lstm_function(input, hx, params): |
| r"""Check whether we could use decompose lstm with mkldnn_rnn_layer. |
| All the below conditions need to be met: |
| * ``torch._C._get_mkldnn_enabled()`` returns ``True``. |
| * All the input args are on CPU. |
| * The dtypes of args are either torch.float or torch.bfloat16. |
| * Inference. |
| * ``has_projections`` returns ``False``. |
| |
| Args: |
| * input: the input sequence to LSTM |
| * hx: a tuple of the input hidden state and cell state ``(h_0, c_0)`` to LSTM |
| * params: the weight and bias tensors of LSTM |
| """ |
| |
| def use_mkldnn(input, hx, params): |
| if not torch._C._get_mkldnn_enabled(): |
| return False |
| |
| tensors = [input] + list(hx) + list(chain.from_iterable(params)) |
| devices = {t.device for t in tensors} |
| if len(devices) != 1: |
| return False |
| |
| device = devices.pop() |
| if device != torch.device("cpu"): |
| return False |
| # With autocast, possible to have mixed dtype here |
| dtypes = {t.dtype for t in tensors} |
| for dtype in dtypes: |
| if dtype not in [torch.float, torch.bfloat16]: |
| return False |
| |
| if input.requires_grad: |
| return False |
| |
| has_projections = hx[0].size(2) != hx[1].size(2) |
| if has_projections: |
| return False |
| |
| return True |
| |
| # mkldnn_one_layer_lstm does not depend on seq_len while one_layer_lstm |
| # will expand over the seq_len dim |
| if use_mkldnn(input, hx, params): |
| return mkldnn_one_layer_lstm |
| else: |
| return one_layer_lstm |
| |
| |
| @register_decomposition(aten.lstm.input) |
| @aten.lstm.input.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.lstm.input.py_impl(DispatchKey.Autograd) |
| def lstm_impl( |
| input, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| ): |
| assert len(hx) == 2, "lstm expects two hidden states" |
| params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2)) |
| hidden = list(zip(hx[0], hx[1])) |
| layer_fn = select_one_layer_lstm_function(input, hx, params) |
| out, final_hiddens = _rnn_helper( |
| input, |
| hidden, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| layer_fn, |
| ) |
| final_hiddens = list(zip(*final_hiddens)) |
| return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0) |
| |
| |
| @register_decomposition(aten.lstm.data) |
| @aten.lstm.data.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.lstm.data.py_impl(DispatchKey.Autograd) |
| def lstm_data_impl( |
| data, |
| batch_sizes, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| ): |
| assert len(hx) == 2, "lstm expects two hidden states" |
| params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2)) |
| hidden = list(zip(hx[0], hx[1])) |
| out, final_hiddens = _rnn_helper( |
| data, |
| hidden, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| False, |
| partial(one_layer_lstm_data, batch_sizes=batch_sizes), |
| ) |
| final_hiddens = list(zip(*final_hiddens)) |
| return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0) |
| |
| |
| def gru_cell(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): |
| chunked_igates = inp.chunk(3, 1) |
| chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 2) |
| reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid() |
| input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid() |
| new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh() |
| return (cur_hidden - new_gate) * input_gate + new_gate |
| |
| |
| def gru_cell_data(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): |
| chunked_igates = F.linear(inp, ih_weight, ih_bias).chunk(3, 1) |
| chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 1) |
| reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid() |
| input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid() |
| new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh() |
| return (cur_hidden - new_gate) * input_gate + new_gate |
| |
| |
| @register_decomposition(aten.gru.data) |
| @aten.gru.data.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.gru.data.py_impl(DispatchKey.Autograd) |
| def gru_impl_data( |
| data, |
| batch_sizes, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| ): |
| params = gather_params(params, has_biases, False) |
| out, final_hiddens = _rnn_helper( |
| data, |
| hx.unbind(0), |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| False, |
| partial(one_layer_rnn_data, batch_sizes=batch_sizes, hidden_fn=gru_cell_data), |
| ) |
| return out, torch.stack(final_hiddens, 0) |
| |
| |
| @register_decomposition(aten.gru.input) |
| @aten.gru.input.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.gru.input.py_impl(DispatchKey.Autograd) |
| def gru_impl( |
| input, |
| hx, |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| ): |
| params = gather_params(params, has_biases, False) |
| out, final_hiddens = _rnn_helper( |
| input, |
| hx.unbind(0), |
| params, |
| has_biases, |
| num_layers, |
| dropout, |
| train, |
| bidirectional, |
| batch_first, |
| partial(one_layer_rnn, hidden_fn=gru_cell), |
| ) |
| return out, torch.stack(final_hiddens, 0) |
| |
| |
| @register_decomposition(aten._upsample_bilinear2d_aa.vec) |
| @aten._upsample_bilinear2d_aa.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_bilinear2d_aa.vec.py_impl(DispatchKey.Autograd) |
| def upsample_bilinear2d_aa_vec(input, output_size, align_corners, scale_factors): |
| osize = upsample_compute_output_size(input.size(), output_size, scale_factors) |
| scale_h = get_scale_value(scale_factors, 0) |
| scale_w = get_scale_value(scale_factors, 1) |
| return torch.ops.aten._upsample_bilinear2d_aa( |
| input, osize, align_corners, scale_h, scale_w |
| ) |
| |
| |
| @register_decomposition(aten._upsample_bicubic2d_aa.vec) |
| @aten._upsample_bicubic2d_aa.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten._upsample_bicubic2d_aa.vec.py_impl(DispatchKey.Autograd) |
| def upsample_bicubic2d_aa_vec(input, output_size, align_corners, scale_factors): |
| osize = upsample_compute_output_size(input.size(), output_size, scale_factors) |
| scale_h = get_scale_value(scale_factors, 0) |
| scale_w = get_scale_value(scale_factors, 1) |
| return torch.ops.aten._upsample_bicubic2d_aa( |
| input, osize, align_corners, scale_h, scale_w |
| ) |
| |
| |
| @register_decomposition(aten.upsample_bilinear2d.vec) |
| @register_decomposition(aten.upsample_trilinear3d.vec) |
| @aten.upsample_linear1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_linear1d.vec.py_impl(DispatchKey.Autograd) |
| @aten.upsample_bilinear2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_bilinear2d.vec.py_impl(DispatchKey.Autograd) |
| @aten.upsample_trilinear3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_trilinear3d.vec.py_impl(DispatchKey.Autograd) |
| def _upsample_linear_vec(input, output_size, align_corners, scale_factors): |
| osize = upsample_compute_output_size(input.size(), output_size, scale_factors) |
| scales = scale_factors if scale_factors else [None] * len(osize) |
| return _upsample_linear(input, osize, align_corners, scales) |
| |
| |
| @register_decomposition([aten.upsample_linear1d.default, aten.upsample_linear1d.out]) |
| @out_wrapper() |
| def upsample_linear1d( |
| input: Tensor, |
| output_size: List[int], |
| align_corners: bool, |
| scales_w: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_linear(input, output_size, align_corners, [scales_w]) |
| |
| |
| @register_decomposition( |
| [aten.upsample_bilinear2d.default, aten.upsample_bilinear2d.out] |
| ) |
| @aten.upsample_bilinear2d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper() |
| def upsample_bilinear2d( |
| input: Tensor, |
| output_size: List[int], |
| align_corners: bool, |
| scales_h: Optional[float] = None, |
| scales_w: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_linear(input, output_size, align_corners, [scales_h, scales_w]) |
| |
| |
| @register_decomposition( |
| [aten.upsample_trilinear3d.default, aten.upsample_trilinear3d.out] |
| ) |
| @out_wrapper() |
| def upsample_trilinear3d( |
| input: Tensor, |
| output_size: List[int], |
| align_corners: bool, |
| scales_d: Optional[float] = None, |
| scales_h: Optional[float] = None, |
| scales_w: Optional[float] = None, |
| ) -> Tensor: |
| return _upsample_linear( |
| input, output_size, align_corners, [scales_d, scales_h, scales_w] |
| ) |
| |
| |
| def _compute_scale(in_size, out_size, align_corners, scale=None): |
| if align_corners: |
| return (in_size - 1.0) / (out_size - 1.0) if out_size > 1 else 0 |
| else: |
| return 1.0 / scale if scale is not None and scale > 0 else in_size / out_size |
| |
| |
| def _compute_source_index(scale, dst_index, align_corners): |
| if align_corners: |
| return scale * dst_index |
| else: |
| return scale * (dst_index + 0.5) - 0.5 |
| |
| |
| def _sum_tensors_uint8( |
| src: Iterable[Tensor], weights: Iterable[Tensor], weights_precision: Tensor |
| ) -> Tensor: |
| output = _sum_tensors( |
| s.to(torch.int32) * c.to(torch.int32) for s, c in zip(src, weights) |
| ) + (1 << (weights_precision - 1)) |
| output = output >> weights_precision |
| return torch.clamp(output, 0, 255).to(torch.uint8) |
| |
| |
| def _compute_weight_precision(weights: TensorSequenceType) -> Tensor: |
| max_weight = torch.stack(weights).max() |
| max_weight_precision = 22 |
| precisions = torch.arange(max_weight_precision, device=max_weight.device) |
| values = 0.5 + max_weight * (1 << (precisions + 1)) |
| mask = values >= (1 << 15) |
| return max_weight_precision - mask.sum() |
| |
| |
| @pw_cast_for_opmath |
| def _upsample_linear( |
| input: Tensor, |
| output_size: List[int], |
| align_corners: bool, |
| scales: List[Optional[float]], |
| ) -> Tensor: |
| # get dimensions of original image |
| n_batch, n_channels = input.shape[:2] |
| inp_sizes = input.shape[2:] |
| n_dims = len(inp_sizes) |
| |
| _, dtype = utils.elementwise_dtypes( |
| input, |
| type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, |
| ) |
| |
| def get_values(inp_size, out_size, scales, nsqueeze): |
| # First Calculate scaling factor |
| scale_factor = _compute_scale(inp_size, out_size, align_corners, scales) |
| # We have to create arange with int64 dtype and use .to in order to avoid |
| # additional kernels creation in inductor and get a perf slowdown |
| i = torch.arange(out_size, device=input.device).to(dtype=dtype) |
| |
| x_f32 = _compute_source_index(scale_factor, i, align_corners).clamp(min=0.0) |
| x_f32 = x_f32.reshape(x_f32.shape[0], *[1] * (nsqueeze)) |
| x = x_f32.to(torch.int64) |
| xp1 = (x + 1).clamp(max=inp_size - 1) |
| return x_f32, x, xp1 |
| |
| values = [ |
| get_values(inp_size, out_size, scales, n_dims - 1 - i) |
| for i, (inp_size, out_size, scales) in enumerate( |
| zip(inp_sizes, output_size, scales) |
| ) |
| ] |
| xs_f32, xs, xp1s = list(zip(*values)) |
| |
| vs = [] |
| for a in product(*[[0, 1]] * n_dims): |
| idx = [None, None] + [xs[k] if a[k] == 0 else xp1s[k] for k in range(n_dims)] |
| v = aten._unsafe_index(input, idx) |
| v = _maybe_convert_to_dtype(v, dtype) |
| vs.append(v) |
| |
| for i in reversed(range(n_dims)): |
| xscale = (xs_f32[i] - xs[i]).clamp(0.0, 1.0).to(dtype) |
| vs = [ |
| # x1 * (1 - alpha) + x2 * alpha == x1 + (x2 - x1) * alpha |
| v1 + torch.mul(v2 - v1, xscale) |
| for v1, v2 in zip(vs[::2], vs[1::2]) |
| ] |
| |
| assert len(vs) == 1 |
| result = vs[0] |
| |
| # convert output to correct memory format, if necessary |
| memory_format = utils.suggest_memory_format(input) |
| |
| # following "heuristic: only use channels_last path when it's faster than the contiguous path" |
| if input.device.type == "cuda" and n_channels < 16: |
| memory_format = torch.contiguous_format |
| |
| assert isinstance(result, torch.Tensor) |
| |
| result = result.contiguous(memory_format=memory_format) |
| |
| if not input.is_floating_point(): |
| result = result.round() |
| |
| return result |
| |
| |
| # We should be applying decompositions after all transformations |
| @register_decomposition(aten.is_same_size.default) |
| def is_same_size(a: Tensor, b: Tensor) -> bool: |
| return a.shape == b.shape |
| |
| |
| @register_decomposition([aten._reshape_alias, aten._unsafe_view]) |
| @out_wrapper() |
| def _reshape_alias(x, shape, *args): |
| return aten.view(x, shape) |
| |
| |
| @register_decomposition([aten._unsafe_index]) |
| def _index(x, indices): |
| return aten.index(x, indices) |
| |
| |
| def _nll_loss_forward( |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor], |
| reduction: int, |
| ignore_index: int, |
| ) -> Tuple[Tensor, Tensor]: |
| # self can be [N, C] or [C] |
| # target can be [N] or [] |
| |
| n_dims = self.dim() |
| channel_dim = 1 |
| if n_dims < 2: |
| channel_dim = 0 |
| |
| if weight is not None: |
| if n_dims > 1: |
| shape = [ |
| 1, |
| ] * n_dims |
| shape[channel_dim] = weight.shape[0] |
| w = weight.view(shape) |
| else: |
| w = weight |
| self = self * w |
| safe_target = torch.where(target != ignore_index, target, 0) |
| safe_target_ = safe_target.unsqueeze(channel_dim) |
| # target can be [N, 1] or [1] |
| |
| result = -torch.gather(self, channel_dim, safe_target_).squeeze(channel_dim) |
| |
| result = torch.where(target != ignore_index, result, 0) |
| |
| if reduction == Reduction.NONE.value and n_dims > 1: |
| total_weight = self.new_full((), 0.0) |
| return result, total_weight |
| |
| if weight is not None: |
| w = w.expand(self.shape) |
| wsum = torch.gather(w, channel_dim, safe_target_).squeeze(channel_dim) |
| wsum = torch.where(target != ignore_index, wsum, 0) |
| total_weight = wsum.sum() |
| else: |
| total_weight = (target != ignore_index).sum().to(self) |
| |
| if reduction == Reduction.SUM.value: |
| result = result.sum() |
| elif reduction == Reduction.MEAN.value: |
| result = result.sum() / total_weight |
| |
| return result, total_weight |
| |
| |
| @register_decomposition(aten.nll_loss_forward) |
| @out_wrapper("output", "total_weight") |
| def nll_loss_forward( |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor], |
| reduction: int, |
| ignore_index: int, |
| ) -> Tuple[Tensor, Tensor]: |
| assert self.dim() > 0 and self.dim() <= 2, "input tensor should be 1D or 2D" |
| assert ( |
| target.dim() <= 1 |
| ), "0D or 1D target tensor expected, multi-target not supported" |
| |
| no_batch_dim = self.dim() == 1 and target.dim() == 0 |
| assert no_batch_dim or ( |
| self.shape[0] == target.shape[0] |
| ), f"size mismatch (got input: {self.shape}, target: {target.shape})" |
| |
| n_classes = self.shape[-1] |
| |
| assert weight is None or ( |
| weight.dim() == 1 and weight.numel() == n_classes |
| ), f"weight tensor should be defined either for all {n_classes} classes or no classes but got weight tensor of shape: {weight.shape}" # noqa: B950 |
| |
| return _nll_loss_forward(self, target, weight, reduction, ignore_index) |
| |
| |
| @register_decomposition(aten.nll_loss2d_forward) |
| @out_wrapper("output", "total_weight") |
| def nll_loss2d_forward( |
| self: Tensor, |
| target: Tensor, |
| weight: Optional[Tensor], |
| reduction: int, |
| ignore_index: int, |
| ) -> Tuple[Tensor, Tensor]: |
| return _nll_loss_forward(self, target, weight, reduction, ignore_index) |
| |
| |
| # These are adapted from aten/src/ATen/native/UpSample.h, wich is based on |
| # https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm |
| def _upsample_cubic_convolution1(x: Tensor, A: float) -> Tensor: |
| return ((A + 2) * x - (A + 3)) * x * x + 1 |
| |
| |
| def _upsample_cubic_convolution2(x: Tensor, A: float) -> Tensor: |
| return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A |
| |
| |
| def _upsample_get_cubic_coefficients(t: Tensor) -> TensorSequenceType: |
| A = -0.75 |
| |
| if t.device == torch.device("cpu"): |
| tt1 = torch.stack([t, 1.0 - t], dim=0) |
| tt2 = torch.stack([t + 1.0, 2.0 - t], dim=0) |
| w03 = _upsample_cubic_convolution2(tt2, A) |
| w12 = _upsample_cubic_convolution1(tt1, A) |
| w0, w3 = torch.unbind(w03, dim=0) |
| w1, w2 = torch.unbind(w12, dim=0) |
| return w0, w1, w2, w3 |
| else: |
| return ( |
| _upsample_cubic_convolution2(t + 1.0, A), |
| _upsample_cubic_convolution1(t, A), |
| _upsample_cubic_convolution1(1.0 - t, A), |
| _upsample_cubic_convolution2(2.0 - t, A), |
| ) |
| |
| |
| def _upsample_cubic_interp1d(coeffs: TensorSequenceType, ts: Tensor) -> Tensor: |
| coeffs2 = _upsample_get_cubic_coefficients(ts) |
| return _sum_tensors(c1 * c2 for (c1, c2) in zip(coeffs, coeffs2)) |
| |
| |
| # Need this instead of just sum() to keep mypy happy |
| def _sum_tensors(ts: Iterable[Tensor]) -> Tensor: |
| return reduce(torch.add, ts) |
| |
| |
| def _linspace_from_neg_one( |
| num_steps: int, align_corners: bool, dtype: torch.dtype, device: torch.device |
| ): |
| if num_steps <= 1: |
| return torch.tensor(0, device=device, dtype=dtype) |
| |
| a = ((num_steps - 1) / num_steps) if not align_corners else 1 |
| return torch.linspace(-a, a, steps=num_steps, device=device, dtype=dtype) |
| |
| |
| def _make_base_grid_4d(theta: Tensor, h: int, w: int, align_corners: bool): |
| dtype = theta.dtype |
| device = theta.device |
| |
| # Using padding and summation generates a single kernel vs using torch.stack where 3 kernels generated |
| # corresponding to each individual tensor: grid_x, grid_y, grid_one |
| grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, w, 1) |
| grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(h, 1, 1) |
| grid_one = torch.ones((1, 1, 1), dtype=dtype, device=device) |
| |
| # this is just a temporary hack and we should use torch.stack here once #104480 is merged |
| grid_x = torch.nn.functional.pad(grid_x, pad=(0, 2), mode="constant", value=0) |
| grid_y = torch.nn.functional.pad(grid_y, pad=(1, 1), mode="constant", value=0) |
| grid_one = torch.nn.functional.pad(grid_one, pad=(2, 0), mode="constant", value=0) |
| return grid_x + grid_y + grid_one |
| |
| |
| def _make_base_grid_5d(theta: Tensor, d: int, h: int, w: int, align_corners: bool): |
| dtype = theta.dtype |
| device = theta.device |
| |
| grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, 1, w, 1) |
| grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(1, h, 1, 1) |
| grid_z = _linspace_from_neg_one(d, align_corners, dtype, device).view(d, 1, 1, 1) |
| grid_one = torch.ones((1, 1, 1, 1), dtype=dtype, device=device) |
| |
| # this is just a temporary hack and we should use torch.stack here once #104480 is merged |
| grid_x = torch.nn.functional.pad(grid_x, pad=(0, 3), mode="constant", value=0) |
| grid_y = torch.nn.functional.pad(grid_y, pad=(1, 2), mode="constant", value=0) |
| grid_z = torch.nn.functional.pad(grid_z, pad=(2, 1), mode="constant", value=0) |
| grid_one = torch.nn.functional.pad(grid_one, pad=(3, 0), mode="constant", value=0) |
| return grid_x + grid_y + grid_z + grid_one |
| |
| |
| def _affine_grid_generator_4d(theta: Tensor, size: List[int], align_corners: bool): |
| n, _, h, w = size |
| base_grid = _make_base_grid_4d(theta, h, w, align_corners=align_corners) |
| # base_grid shape is (h, w, 3) and theta shape is (n, 2, 3) |
| # We do manually a matrix multiplication which is faster than mm() |
| # (h * w, 3, 1) * (n, 1, 3, 2) -> (n, h * w, 2) |
| grid = (base_grid.view(-1, 3, 1) * theta.mT.unsqueeze(1)).sum(-2) |
| return grid.view(n, h, w, 2) |
| |
| |
| def _affine_grid_generator_5d(theta: Tensor, size: List[int], align_corners: bool): |
| n, _, d, h, w = size |
| base_grid = _make_base_grid_5d(theta, d, h, w, align_corners=align_corners) |
| # base_grid shape is (d, h, w, 4) and theta shape is (n, 3, 4) |
| # We do manually a matrix multiplication which is faster than mm() |
| # (d * h * w, 4, 1) * (n, 1, 4, 3) -> (n, h * w, 3) |
| grid = (base_grid.view(-1, 4, 1) * theta.mT.unsqueeze(1)).sum(-2) |
| return grid.view(n, d, h, w, 3) |
| |
| |
| @register_decomposition(aten.affine_grid_generator) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def affine_grid_generator(theta: Tensor, size: List[int], align_corners: bool): |
| torch._check( |
| len(size) in (4, 5), |
| lambda: "affine_grid_generator needs 4d (spatial) or 5d (volumetric) inputs.", |
| ) |
| if len(size) == 4: |
| return _affine_grid_generator_4d(theta, size, align_corners=align_corners) |
| else: |
| return _affine_grid_generator_5d(theta, size, align_corners=align_corners) |
| |
| |
| def _grid_sampler_2d( |
| a: Tensor, |
| grid: Tensor, |
| interpolation_mode: int = 0, |
| padding_mode: int = 0, |
| align_corners: bool = False, |
| _expand_grid: bool = True, |
| ) -> Tensor: |
| # This method is a copy of grid_sampler_2d implementation and introduced with additional arg _expand_grid to |
| # optionally expand the input grid for performance reasons. |
| # Experimenting locally it was found that compiled CUDA code is accelerated by ~5x |
| # and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2) |
| # However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first. |
| # Thus we apply this hack to not expand the grid for this case. |
| |
| torch._check( |
| interpolation_mode in (0, 1, 2), |
| lambda: f"Invalid interpolation mode {interpolation_mode}", |
| ) |
| torch._check( |
| padding_mode in (0, 1, 2), lambda: f"Invalid padding mode {padding_mode}" |
| ) |
| |
| def unnormalize(coords: Tensor, size: int) -> Tensor: |
| # Rescale coordinates from [-1, 1] to: |
| # [0, size - 1] if align_corners is True |
| # [-.5, size -.5] if align_corners is False |
| mul = (size * 0.5 - 0.5) if align_corners else (size * 0.5) |
| ofs = size * 0.5 - 0.5 |
| return coords * mul + ofs |
| |
| # Reflects coordinates until they fall between low and high (inclusive). |
| # The bounds are passed as twice their value so that half-integer values |
| # can be represented as ints. |
| def reflect_coordinates(coords: Tensor, twice_low: int, twice_high: int) -> Tensor: |
| if twice_low == twice_high: |
| return torch.zeros_like(coords) |
| coords_min = twice_low / 2 |
| coords_span = (twice_high - twice_low) / 2 |
| coords2 = (coords - coords_min).abs() |
| extra = torch.fmod(coords2, coords_span) |
| flips = (coords2 / coords_span).floor().to(dtype=torch.int8) |
| return torch.where( |
| flips & 1 == 0, extra + coords_min, coords_span + coords_min - extra |
| ) |
| |
| def compute_coordinates(coords: Tensor, size: int) -> Tensor: |
| if padding_mode == 0: # Zero |
| return coords |
| elif padding_mode == 1: # Borders |
| return torch.clamp(coords, 0, size - 1) |
| else: # padding_mode == 2, Reflection |
| if align_corners: |
| coords_reflected = reflect_coordinates(coords, 0, 2 * (size - 1)) |
| else: |
| coords_reflected = reflect_coordinates(coords, -1, 2 * size - 1) |
| return torch.clamp(coords_reflected, 0, size - 1) |
| |
| def compute_source_index(coords: Tensor, size: int) -> Tensor: |
| coords_un = unnormalize(coords, size) |
| return compute_coordinates(coords_un, size) |
| |
| N, C, iH, iW = a.shape |
| _, oH, oW, two = grid.shape |
| assert two == 2 |
| |
| if _expand_grid: |
| # Let's expand grid to [N, C, oH, oW, 2] |
| # This allows to generate a single triton cuda kernel instead of two kernels. |
| # Two kernels are due source indices, weights have shape (N, 1, oH, oW), xnumel=N*oH*oW |
| # and output has shape (N, C, oH, oW), xnumel=N*C*oH*oW |
| # Expanding grid to (N, C, oH, oW, two) unifies xnumel to N*C*oH*oW |
| grid = grid.view(N, 1, oH, oW, two).expand(N, C, oH, oW, 2) |
| |
| def in_bounds_cond(xs: Tensor, ys: Tensor) -> Tensor: |
| return torch.logical_and( |
| 0 <= xs, torch.logical_and(xs < iW, torch.logical_and(0 <= ys, ys < iH)) |
| ) |
| |
| N_idx = torch.arange(N, device=a.device).view(N, 1, 1, 1) |
| C_idx = torch.arange(C, device=a.device).view(1, C, 1, 1) |
| |
| def clip(xs: Tensor, ys: Tensor, ws: Tensor) -> TensorSequenceType: |
| cond = in_bounds_cond(xs, ys) |
| # To clip to inside valid coordinates, we map the coordinates |
| # to (x, y) = (0, 0) and also set the weight to 0 |
| # We also change the shape of the tensor to the appropriate one for |
| # broadcasting with N_idx, C_idx for the purposes of advanced indexing |
| c = C if _expand_grid else 1 |
| return tuple( |
| torch.where(cond, t, 0).view(N, c, oH, oW) |
| for t in (xs.to(dtype=torch.int64), ys.to(dtype=torch.int64), ws) |
| ) |
| |
| def get_summand(ix: Tensor, iy: Tensor, w) -> Tensor: |
| # Perform clipping, index into input tensor and multiply by weight |
| idx_x, idx_y, w_ = clip(ix, iy, w) |
| return a[N_idx, C_idx, idx_y, idx_x] * w_ |
| |
| x = grid[..., 0] |
| y = grid[..., 1] |
| |
| if interpolation_mode == 0: # Bilinear |
| ix = compute_source_index(x, iW) |
| iy = compute_source_index(y, iH) |
| |
| ix_nw, iy_nw = ix.floor(), iy.floor() |
| ix_ne, iy_ne = ix_nw + 1, iy_nw |
| ix_sw, iy_sw = ix_nw, iy_nw + 1 |
| ix_se, iy_se = ix_ne, iy_sw |
| |
| w_nw = (ix_se - ix) * (iy_se - iy) |
| w_ne = (ix - ix_sw) * (iy_sw - iy) |
| w_sw = (ix_ne - ix) * (iy - iy_ne) |
| w_se = (ix - ix_nw) * (iy - iy_nw) |
| |
| return _sum_tensors( |
| get_summand(ix, iy, w) |
| for (ix, iy, w) in ( |
| (ix_nw, iy_nw, w_nw), |
| (ix_ne, iy_ne, w_ne), |
| (ix_sw, iy_sw, w_sw), |
| (ix_se, iy_se, w_se), |
| ) |
| ) |
| elif interpolation_mode == 1: # Nearest |
| ix = compute_source_index(x, iW) |
| iy = compute_source_index(y, iH) |
| |
| ix_nearest = ix.round() |
| iy_nearest = iy.round() |
| |
| return get_summand(ix_nearest, iy_nearest, 1) |
| else: # interpolation_mode == 2, Bicubic |
| ix = unnormalize(x, iW) |
| iy = unnormalize(y, iH) |
| |
| ix_nw = ix.floor() |
| iy_nw = iy.floor() |
| |
| tx = ix - ix_nw |
| ty = iy - iy_nw |
| |
| if not _expand_grid: |
| tx = tx.unsqueeze(1) |
| ty = ty.unsqueeze(1) |
| |
| def get_value_bounded(ix: Tensor, iy: Tensor) -> Tensor: |
| x = compute_coordinates(ix, iW) |
| y = compute_coordinates(iy, iH) |
| return get_summand(x, y, 1) |
| |
| def get_coeff(ofs: int) -> Tensor: |
| iy_ofs = iy_nw + (ofs - 1) |
| cs = ( |
| get_value_bounded(ix_nw - 1, iy_ofs), |
| get_value_bounded(ix_nw, iy_ofs), |
| get_value_bounded(ix_nw + 1, iy_ofs), |
| get_value_bounded(ix_nw + 2, iy_ofs), |
| ) |
| return _upsample_cubic_interp1d(cs, tx) |
| |
| coeffs = tuple(get_coeff(ofs) for ofs in range(4)) |
| return _upsample_cubic_interp1d(coeffs, ty) |
| |
| |
| @register_decomposition(aten.grid_sampler_2d) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def grid_sampler_2d( |
| a: Tensor, |
| grid: Tensor, |
| interpolation_mode: int = 0, |
| padding_mode: int = 0, |
| align_corners: bool = False, |
| ) -> Tensor: |
| return _grid_sampler_2d( |
| a, |
| grid=grid, |
| interpolation_mode=interpolation_mode, |
| padding_mode=padding_mode, |
| align_corners=align_corners, |
| ) |
| |
| |
| @register_decomposition(aten.mv) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def mv(self, vec): |
| torch._check( |
| self.dim() == 2 and vec.dim() == 1, |
| lambda: f"matrix @ vector expected, got {self.dim()}, {vec.dim()}", |
| ) |
| torch._check( |
| self.size(1) == vec.size(0), |
| lambda: f"size mismatch, got input ({self.size(0)}x{self.size(1)}), vec ({vec.size(0)})", |
| ) |
| return (self * vec).sum(dim=1) |
| |
| |
| @register_decomposition(aten.binary_cross_entropy_with_logits) |
| @out_wrapper() |
| def binary_cross_entropy_with_logits( |
| self, target, weight=None, pos_weight=None, reduction=Reduction.MEAN.value |
| ): |
| if pos_weight is not None: |
| log_weight = (pos_weight - 1) * target + 1 |
| loss = (1 - target) * self - (log_weight * F.logsigmoid(self)) |
| else: |
| loss = (1 - target) * self - F.logsigmoid(self) |
| |
| if weight is not None: |
| loss = loss * weight |
| |
| return apply_loss_reduction(loss, reduction) |
| |
| |
| def should_fold(tensor1: torch.Tensor, tensor2: torch.Tensor, is_out: bool) -> bool: |
| # For comments of the logic of this function see eager in /native/LinearAlgebra.cpp |
| |
| t1, t2 = (tensor1, tensor2) if tensor1.ndim >= tensor2.ndim else (tensor2, tensor1) |
| |
| from torch.fx.experimental.symbolic_shapes import guard_size_oblivious |
| |
| if not (t1.ndim >= 3 and t2.ndim <= 2): |
| return False |
| if t2.requires_grad and not is_out: |
| return True |
| if tensor1.ndim == 2: |
| return False |
| if guard_size_oblivious(t1.numel() == 0): |
| return True |
| |
| t1_shape = t1.shape |
| t1_stride = t1.stride() |
| return all( |
| st1 == st2 * s2 |
| for (st1, st2, s2) in zip(t1_stride[:-2], t1_stride[1:-1], t1_shape[1:-1]) |
| ) |
| |
| |
| @aten.matmul.default.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.matmul.out.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @out_wrapper(pass_is_out=True) |
| def matmul(tensor1, tensor2, *, is_out=False): |
| dim_tensor1 = tensor1.dim() |
| dim_tensor2 = tensor2.dim() |
| assert dim_tensor1 != 0 and dim_tensor2 != 0 |
| if dim_tensor1 == 1 and dim_tensor2 == 1: |
| return torch.dot(tensor1, tensor2) |
| elif dim_tensor1 == 2 and dim_tensor2 == 1: |
| return torch.mv(tensor1, tensor2) |
| elif dim_tensor1 == 1 and dim_tensor2 == 2: |
| return torch.squeeze(torch.mm(torch.unsqueeze(tensor1, 0), tensor2), 0) |
| elif dim_tensor1 == 2 and dim_tensor2 == 2: |
| return torch.mm(tensor1, tensor2) |
| elif should_fold(tensor1, tensor2, is_out): |
| # dim_tensor1 >=3 && (dim_tensor2 == 1 || dim_tensor2 == 2) || |
| # dim_tensor2 >=3 && (dim_tensor1 == 1 || dim_tensor1 == 2) |
| # and some condition on the strides is fulfilled |
| |
| # optimization: use mm instead of bmm by folding the batch of the larger tensor |
| # into its leading matrix dimension |
| transpose = dim_tensor2 > dim_tensor1 |
| t1 = tensor2.mT if transpose else tensor1 |
| t2 = ( |
| tensor2 if not transpose else (tensor1.t() if dim_tensor1 == 2 else tensor1) |
| ) |
| # Invariant: t1.dim() >= 3 && (t2.dim() == 1 || t2.dim() == 2) |
| # and t1 and t2 are matmul-compatible |
| |
| # Why not t1.view(-1, sizes_1[-1])? |
| # If the last dim is 0, then view(-1, 0) won't work because the -1 becomes ambiguous. |
| # This can happen in e.g. [3, 5, 0] @ [0, 0]. |
| sizes_1 = t1.shape |
| output_shape = list(sizes_1[:-1]) |
| folded_dim1 = reduce(operator.mul, output_shape) |
| |
| # Readjust output_shape if we are multiplying by a matrix |
| t2_is_matrix = t2.dim() == 2 |
| if t2_is_matrix: |
| output_shape.append(t2.shape[1]) |
| |
| # This will almost always be a view. |
| # It may not be a view if t2->requires_grad(). See should_fold in aten/ for an explanation |
| t1_folded = t1.reshape(folded_dim1, sizes_1[-1]) |
| if t2_is_matrix: |
| # This copies if we perform a 2D @ 3D and the first tensor requires_grad |
| # See should_fold native/LinearAlgebra.cpp for why. |
| output = t1_folded.mm(t2).view(output_shape) |
| return output.mT.contiguous() if transpose else output |
| else: |
| return t1_folded.mv(t2).view(output_shape) |
| |
| elif dim_tensor1 >= 1 and dim_tensor2 >= 1: |
| # We are multiplying b1 x n x m1 by x2 x m2 x p (where b1 can be a list); |
| # we track m1 vs m2 separately even though they must match for nicer error messages |
| n = tensor1.size(-2) if dim_tensor1 > 1 else 1 |
| m1 = tensor1.size(-1) |
| batch_tensor1 = tensor1.shape[:-2] |
| m2 = tensor2.size(-2) if dim_tensor2 > 1 else tensor2.size(-1) |
| p = tensor2.size(-1) if dim_tensor2 > 1 else 1 |
| |
| batch_tensor2: List[int] = [] |
| # TODO: handling of slice |
| for i in range(dim_tensor2 - 2): |
| batch_tensor2.append(tensor2.size(i)) |
| |
| # Same optimization for the gradients as that in should_fold |
| # If we're going to broadcast, we force it to go through the should_fold branch |
| if ( |
| dim_tensor1 == 3 |
| and dim_tensor2 == 3 |
| and batch_tensor1[0] != batch_tensor2[0] |
| ): |
| if batch_tensor1[0] == 1 and tensor1.requires_grad: |
| return matmul(tensor1.squeeze(0), tensor2) |
| if batch_tensor2[0] == 1 and tensor2.requires_grad: |
| return matmul(tensor1, tensor2.squeeze(0)) |
| |
| # expand the batch portion (i.e. cut off matrix dimensions and expand rest) |
| expand_batch_portion = list( |
| torch.broadcast_shapes(batch_tensor1, batch_tensor2) |
| ) |
| |
| tensor1_expand_size = expand_batch_portion + [n, m1] |
| |
| expand_batch_product = prod(expand_batch_portion) |
| |
| # HACK: We need reshape with symint support |
| tensor1_expanded = tensor1.expand(tensor1_expand_size).reshape( |
| expand_batch_product, n, m1 |
| ) |
| |
| vector_rhs = dim_tensor2 == 1 |
| if vector_rhs: |
| tensor2_expand_size = expand_batch_portion + [m2] |
| tensor2_expanded = ( |
| tensor2.expand(tensor2_expand_size) |
| .reshape(expand_batch_product, m2) |
| .unsqueeze(2) |
| ) |
| else: |
| tensor2_expand_size = expand_batch_portion + [m2, p] |
| tensor2_expanded = tensor2.expand(tensor2_expand_size).reshape( |
| expand_batch_product, m2, p |
| ) |
| |
| output_shape = expand_batch_portion |
| if dim_tensor1 > 1: |
| output_shape.append(n) |
| |
| if dim_tensor2 > 1: |
| output_shape.append(p) |
| |
| if vector_rhs: |
| return tensor1_expanded.bmm(tensor2_expanded).squeeze(-1).view(output_shape) |
| else: |
| return tensor1_expanded.bmm(tensor2_expanded).view(output_shape) |
| else: |
| torch._check(False, lambda: "both arguments to matmul need to be at least 1D") |
| |
| |
| @register_decomposition([aten.upsample_bicubic2d.default, aten.upsample_bicubic2d.out]) |
| @aten.upsample_bicubic2d.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def upsample_bicubic2d_default( |
| input: Tensor, |
| output_size: Tuple[int, int], |
| align_corners: bool, |
| scale_h: Optional[float] = None, |
| scale_w: Optional[float] = None, |
| ) -> Tensor: |
| # get dimensions of original image |
| _, _, in_h, in_w = input.shape |
| |
| # Calculate horizontal and vertical scaling factor |
| h_scale_factor = _compute_scale(in_h, output_size[0], align_corners, scale_h) |
| w_scale_factor = _compute_scale(in_w, output_size[1], align_corners, scale_w) |
| |
| _, dtype = utils.elementwise_dtypes( |
| input, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT |
| ) |
| |
| # We have to create arange with int64 dtype and use .to in order to avoid |
| # additional kernels creation in inductor and get a perf slowdown |
| i = torch.arange(output_size[0], device=input.device).to(dtype=dtype) |
| j = torch.arange(output_size[1], device=input.device).to(dtype=dtype) |
| |
| x_float = _compute_source_index(w_scale_factor, j, align_corners) |
| y_float = _compute_source_index(h_scale_factor, i, align_corners) |
| y_float = y_float.unsqueeze(-1) |
| |
| x = x_float.floor() |
| y = y_float.floor() |
| |
| # We should also clamp xscale/yscale |
| # See guard_index_and_lambda in UpSample.h |
| yscale = (y_float - y).clamp(0.0, 1.0) |
| xscale = (x_float - x).clamp(0.0, 1.0) |
| x = x.to(torch.int64) |
| y = y.to(torch.int64) |
| |
| iys_ofs = (y - 1, y, y + 1, y + 2) |
| ixs_ofs = (x - 1, x, x + 1, x + 2) |
| |
| weights_x = _upsample_get_cubic_coefficients(xscale) |
| weights_y = _upsample_get_cubic_coefficients(yscale) |
| |
| weights_precision_x, weights_precision_y = None, None |
| if input.dtype == torch.uint8: |
| weights_precision_x = _compute_weight_precision(weights_x) |
| weights_precision_y = _compute_weight_precision(weights_y) |
| |
| weights_x = [ |
| (w * (1 << weights_precision_x) + torch.sign(w) * 0.5).to(torch.int16) |
| for w in weights_x |
| ] |
| weights_y = [ |
| (w * (1 << weights_precision_y) + torch.sign(w) * 0.5).to(torch.int16) |
| for w in weights_y |
| ] |
| |
| def load_bounded(ys, xs): |
| y_idx = torch.clamp(ys, 0, in_h - 1) |
| x_idx = torch.clamp(xs, 0, in_w - 1) |
| v = aten._unsafe_index(input, [None, None, y_idx, x_idx]) |
| return v |
| |
| def get_x_interp(y): |
| src_x = tuple(load_bounded(y, x_ofs) for x_ofs in ixs_ofs) |
| if input.dtype == torch.uint8: |
| assert weights_precision_x is not None |
| return _sum_tensors_uint8(src_x, weights_x, weights_precision_x) |
| return _sum_tensors(c1 * c2 for (c1, c2) in zip(src_x, weights_x)) |
| |
| src_y = tuple(get_x_interp(y_ofs) for y_ofs in iys_ofs) |
| if input.dtype == torch.uint8: |
| assert weights_precision_y is not None |
| result = _sum_tensors_uint8(src_y, weights_y, weights_precision_y) |
| else: |
| result = _sum_tensors(c1 * c2 for (c1, c2) in zip(src_y, weights_y)) |
| |
| # convert output to correct memory format, if necessary |
| memory_format = utils.suggest_memory_format(input) |
| result = result.contiguous(memory_format=memory_format) |
| return result |
| |
| |
| @register_decomposition(aten.upsample_bicubic2d.vec) |
| @aten.upsample_bicubic2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd) |
| @aten.upsample_bicubic2d.vec.py_impl(DispatchKey.Autograd) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def upsample_bicubic2d_vec( |
| a: Tensor, |
| output_size: Optional[Tuple[int, int]], |
| align_corners: bool, |
| scale_factors: Optional[Tuple[float, float]] = None, |
| ) -> Tensor: |
| torch._check( |
| bool(output_size) + bool(scale_factors) == 1, |
| lambda: "Must specify exactly one of output_size and scale_factors.", |
| ) |
| if output_size is None: |
| assert scale_factors is not None |
| output_size = cast( |
| Tuple[int, int], |
| tuple( |
| sym_int(sym_float(w) * scale) |
| for w, scale in zip(a.shape[2:], scale_factors) |
| ), |
| ) |
| scale_h, scale_w = scale_factors if scale_factors else (None, None) |
| return upsample_bicubic2d_default(a, output_size, align_corners, scale_h, scale_w) |
| |
| |
| @register_decomposition(aten.reflection_pad1d) |
| @register_decomposition(aten.reflection_pad2d) |
| @register_decomposition(aten.reflection_pad3d) |
| @pw_cast_for_opmath |
| @out_wrapper() |
| def _reflection_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor: |
| def idx(left, middle, right): |
| dim_idx = torch.arange(-left, middle + right, device=a.device) |
| return middle - 1 - (middle - 1 - dim_idx.abs()).abs() |
| |
| return _reflection_or_replication_pad( |
| a, |
| padding, |
| idx, |
| ) |
| |
| |
| @register_decomposition(aten.replication_pad1d) |
| @register_decomposition(aten.replication_pad2d) |
| @register_decomposition(aten.replication_pad3d) |
| @pw_cast_for_opmath |
| @out_wrapper() |
| def _replication_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor: |
| def idx(left, middle, right): |
| dim_idx = torch.arange(-left, middle + right, device=a.device) |
| return torch.clamp(dim_idx, 0, middle - 1) |
| |
| return _reflection_or_replication_pad( |
| a, |
| padding, |
| idx, |
| ) |
| |
| |
| def _reflection_or_replication_pad( |
| a: Tensor, |
| padding: Tuple[int, ...], |
| idx_fn: Callable[[int, int, int], Tensor], |
| ) -> Tensor: |
| dim = len(padding) // 2 |
| torch._check( |
| a.dim() in (dim + 1, dim + 2), |
| lambda: f"reflection_pad{dim}d requires {dim + 1}D or {dim + 2}D input", |
| ) |
| inp_shape = a.shape[-dim:] |
| nc_dim = a.dim() - dim |
| |
| padding_left = [padding[2 * (dim - 1 - i)] for i in range(dim)] |
| padding_right = [padding[2 * (dim - 1 - i) + 1] for i in range(dim)] |
| |
| result = a |
| for i in range(dim): |
| idx: List[Any] = [None] * result.dim() |
| idx[i + nc_dim] = idx_fn(padding_left[i], inp_shape[i], padding_right[i]) |
| result = aten._unsafe_index(result, idx) |
| |
| # convert output to correct memory format, if necessary |
| memory_format = utils.suggest_memory_format(result) |
| result = result.contiguous(memory_format=memory_format) |
| return result |
| |
| |
| @register_decomposition(aten.aminmax) |
| @out_wrapper("min", "max") |
| def aminmax(self, *, dim=None, keepdim=False): |
| amin = torch.amin(self, dim=dim, keepdim=keepdim) |
| amax = torch.amax(self, dim=dim, keepdim=keepdim) |
| return amin, amax |
| |
| |
| @register_decomposition(aten.nansum) |
| @out_wrapper() |
| def nansum(self, dim=None, keepdim=False, *, dtype=None): |
| return aten.sum(torch.where(torch.isnan(self), 0, self), dim, keepdim, dtype=dtype) |
| |
| |
| @register_decomposition([aten.arange.default, aten.arange.out]) |
| @out_wrapper() |
| def arange_default( |
| end: NumberType, |
| *, |
| dtype: Optional[torch.dtype] = None, |
| layout: torch.layout = torch.strided, |
| device: Optional[torch.device] = None, |
| pin_memory: bool = False, |
| ): |
| return aten.arange.start_step( |
| 0, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory |
| ) |
| |
| |
| @register_decomposition([aten.arange.start]) |
| def arange_start( |
| start: NumberType, |
| end: NumberType, |
| *, |
| dtype: Optional[torch.dtype] = None, |
| layout: torch.layout = torch.strided, |
| device: Optional[torch.device] = None, |
| pin_memory: bool = False, |
| ): |
| return aten.arange.start_step( |
| start, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory |
| ) |
| |
| |
| @register_decomposition(out_dtype) |
| def out_dtype_decomp(*args, **kwargs): |
| from torch._higher_order_ops.out_dtype import out_dtype_dense |
| |
| return out_dtype_dense(*args, **kwargs) |
| |
| |
| @register_decomposition(aten.multi_margin_loss) |
| @aten.multi_margin_loss.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper() |
| def multi_margin_loss( |
| input: Tensor, |
| target: Tensor, |
| p: NumberType = 1, |
| margin: NumberType = 1, |
| weight: Optional[Tensor] = None, |
| reduction: int = Reduction.MEAN.value, |
| ) -> Tensor: |
| input = torch.atleast_2d(input) |
| target = torch.atleast_1d(target) |
| nframe = input.shape[0] |
| dim = input.shape[1] |
| torch._check(p == 1 or p == 2, lambda: "only p == 1 and p == 2 supported") |
| torch._check( |
| input.ndim == 2 and dim != 0, |
| lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {input.shape}", |
| ) |
| torch._check( |
| target.ndim == 1 and target.numel() == nframe, |
| lambda: f"inconsistent target size, expected {nframe} but got {target.shape}", |
| ) |
| if weight is not None: |
| weight = torch.atleast_1d(weight) |
| torch._check( |
| weight.ndim == 1 and weight.numel() == dim, # type: ignore[union-attr] |
| lambda: f"inconsistent weight size, expected {dim} but got {weight.shape}", # type: ignore[union-attr] |
| ) |
| target = target.unsqueeze(1) |
| u = torch.gather(input, dim=1, index=target) |
| z = margin - u + input |
| z = z.clamp_min(0) |
| z = z if p == 1 else z * z |
| if weight is not None: |
| z = z * weight[target] |
| idx = torch.arange(dim, device=input.device) |
| z = torch.where(idx != target, z, 0) |
| if reduction == Reduction.MEAN.value: |
| return z.mean() |
| elif reduction == Reduction.SUM.value: |
| return z.sum() / z.shape[1] |
| else: |
| return z.mean(dim=1) |
| |
| |
| @register_decomposition(aten.multilabel_margin_loss_forward) |
| @aten.multilabel_margin_loss_forward.default.py_impl(DispatchKey.Autograd) |
| @out_wrapper("output", "is_target") |
| def multilabel_margin_loss_forward( |
| input: Tensor, |
| target: Tensor, |
| reduction: int, |
| ) -> Tuple[Tensor, Tensor]: |
| orig_input_shape = input.shape |
| orig_target_shape = target.shape |
| input = torch.atleast_2d(input) |
| target = torch.atleast_2d(target) |
| dim = input.shape[1] |
| torch._check( |
| len(orig_input_shape) <= 2 and dim != 0, |
| lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {orig_input_shape}", |
| ) |
| torch._check( |
| len(orig_target_shape) <= 2 and orig_target_shape == orig_input_shape, |
| lambda: f"inconsistent target size: {orig_target_shape} for input of size: {orig_input_shape}", |
| ) |
| # ignores labels after the first -1, detects when -1 is not present |
| idx = torch.arange(dim, device=target.device) |
| is_end = target == -1 |
| end_idx = torch.amin(torch.where(is_end, idx, dim), dim=-1, keepdim=True) |
| # target indices |
| target_mask = idx < end_idx |
| # masks target to be able to use gather, which doesn't allow -1 |
| tidx0 = torch.where(target_mask, target, 0) |
| u = torch.gather(input, dim=-1, index=tidx0) |
| # is_target |
| tidx1 = torch.where(target_mask, target, -1) |
| is_target = torch.any(idx == tidx1.unsqueeze(dim=-1), dim=1) |
| # loss |
| z = 1.0 - u.T.unsqueeze(dim=-1) + input |
| z = z.clamp_min(0) |
| z = z / dim |
| # masks loss |
| z = torch.where(is_target, 0, z) |
| # reduction |
| if reduction == Reduction.MEAN.value: |
| z = z.sum(dim=(0, -1)).mean() |
| elif reduction == Reduction.SUM.value: |
| z = z.sum() |
| else: |
| z = z.sum(dim=(0, -1)) |
| # result |
| is_target = is_target.to(input.dtype).reshape(orig_target_shape) |
| return z, is_target |
| |
| |
| # scaled_dot_product_attention used to be decomposed in pre-autograd, given that |
| # it calls _scaled_dot_product_attention_math and |
| # _scaled_dot_product_attention_math only has a CompositeImplicitAutograd |
| # kernel. As a result it's decomposed into ops with finer granularity. |
| # However recent PRs (#103826 #105131 #115913) added new logic in |
| # scaled_dot_product_attention and now it calls |
| # _scaled_dot_product_flash_attention_for_cpu in export path. This results |
| # in _scaled_dot_product_flash_attention_for_cpu showing up in export result. |
| # This decomposition ensures scaled_dot_product_attention is still decomposed |
| # the same way as before, i.e., going through |
| # _scaled_dot_product_attention_math. Notice that this decomp rule should be |
| # excluded by inductor. |
| @register_decomposition(aten._scaled_dot_product_flash_attention_for_cpu.default) |
| def scaled_dot_product_flash_attention_for_cpu( |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| dropout_p: float = 0.0, |
| is_causal: bool = False, |
| *, |
| attn_mask: Optional[Tensor] = None, |
| scale: Optional[float] = None, |
| ) -> Tuple[Tensor, Tensor]: |
| dtype = query.dtype |
| torch._check( |
| torch.is_floating_point(query), |
| lambda: f"query must be FP32, FP64, BF16, FP16 but got {query.dtype}", |
| ) |
| torch._check( |
| query.dim() == 4 and key.dim() == 4 and value.dim() == 4, |
| lambda: f"q, k, v must be a 4 dimensional tensor, got {query.dim()}, {key.dim()}, {value.dim()}", |
| ) |
| torch._check( |
| dropout_p == 0.0, lambda: f"dropout probability must be zero, got {dropout_p}" |
| ) |
| torch._check( |
| query.shape[3] == value.shape[3] and key.shape[3] == value.shape[3], |
| lambda: "q, k, v should have the same head size", |
| ) |
| |
| output, attn = aten._scaled_dot_product_attention_math.default( |
| query, |
| key, |
| value, |
| attn_mask=attn_mask, |
| dropout_p=dropout_p, |
| is_causal=is_causal, |
| dropout_mask=None, |
| scale=scale, |
| ) |
| # Why this change? |
| # In pre-dispatch export scaled_dot_product_attention is executed via |
| # * flash_attention. |
| # flash_attention allocates output tensor as (N, L, H, E) |
| # it then transposes that to get (N, H, L, E) which is supposed to be the return |
| # tensor dim for scaled_dot_product_attention |
| # assume x: [N, H, L, E] is the output sdpa |
| # In MHA code, this output is then permuted via (2, 0, 1, 3) to get |
| # (L, N, H, E) dim tensor |
| # x = x.permute(2, 0, 1, 3).contiguous() and the viewed via |
| # x = x.view(L * N, H * E) |
| # During pre autograd dispatch call to contiguous is not traced because |
| # flash_attention output after the x.permute is already contiguous |
| # on which the view is valid |
| # However, during 2nd stage export, post-dispatch, we run _match variant |
| # instead of flash* to get the decomposition. _match variant returns |
| # x: [N, H, L, E] applying x.permute(2, 0, 1, 3) returns |
| # x: [L, N, H, E] and without converting this to contiguous tensor |
| # subsequent view is not valid and the export fails |
| # solution is to maintain the return tensor view from the decomp to be |
| # exactly same as *flash* variant. |
| # flash variants output is contiguous as [N, L, H, E] |
| # _match variant out is contiguous as [N, H, L, E] |
| # out = out.transpose(1, 2).contiguous gets output as contiguous |
| # in [N, L, H, E]. |
| # Subsrequent transpose(1, 2) then returns a view on which |
| # aforementioned code snippet, as showm below, is valid |
| # x = x.permute(2, 0, 1, 3).contiguous() and the viewed via |
| # x = x.view(L * N, H * E) |
| |
| # Really the invariant you want to maintain is: |
| # pre-dispatch op-output and its decomposed representation must |
| # return tensor with same view and dims |
| output = output.transpose(1, 2).contiguous(memory_format=torch.contiguous_format) |
| return (output.transpose(1, 2), attn) |
| |
| |
| def register_inplace(aten_op, outplace_op): |
| @register_decomposition(aten_op) |
| def inplace_op(*args, **kwargs): |
| out = outplace_op(*args, **kwargs) |
| return args[0].copy_(out) |
| |
| return inplace_op |
| |
| |
| @register_decomposition([aten.baddbmm]) |
| @out_wrapper() |
| @pw_cast_for_opmath |
| def baddbmm(self, batch1, batch2, beta=1, alpha=1): |
| if not self.is_floating_point() and not self.is_complex(): |
| beta = int(beta) |
| alpha = int(alpha) |
| result = torch.bmm(batch1, batch2) |
| if not isinstance(alpha, numbers.Number) or alpha != 1: |
| result = result * alpha |
| if beta == 0: |
| return result |
| if not isinstance(beta, numbers.Number) or beta != 1: |
| self = self * beta |
| return self + result |
| |
| |
| @register_decomposition(aten.floor_divide) |
| @out_wrapper() |
| def floor_divide(self, other): |
| return torch.div(self, other, rounding_mode="floor") |
| |
| |
| @register_decomposition(aten.sym_numel) |
| def sym_numel(t): |
| return functools.reduce(operator.mul, t.shape, 1) |
| |
| |
| @register_decomposition([aten.sum.default, aten.sum.out]) |
| def sum_default( |
| self: Tensor, |
| *, |
| dtype: Optional[torch.dtype] = None, |
| out: Optional[Tensor] = None, |
| ) -> Tensor: |
| if out is None: |
| return aten.sum.dim_IntList(self, [], dtype=dtype) |
| else: |
| return aten.sum.IntList_out(self, [], dtype=dtype, out=out) |
| |
| |
| @register_decomposition([aten.squeeze.default, aten.squeeze.dim]) |
| def squeeze_default(self: Tensor, dim: Optional[int] = None): |
| if dim is None: |
| return aten.squeeze.dims(self, list(range(self.dim()))) |
| else: |
| return aten.squeeze.dims(self, [dim]) |
| |
| |
| @register_decomposition(torch.ops.aten._weight_norm_interface) |
| def _weight_norm_interface(x, y, dim=0): |
| # https://github.com/pytorch/pytorch/blob/852f8526c52190125446adc9a6ecbcc28fb66182/aten/src/ATen/native/WeightNorm.cpp#L58 |
| keep_dim = tuple(i for i in range(len(x.shape)) if i != dim) |
| norm = x.norm(2, keep_dim, keepdim=True) |
| return x * (y / norm), norm |
| |
| |
| @register_decomposition(aten.isin) |
| @out_wrapper() |
| def isin(elements, test_elements, *, assume_unique=False, invert=False): |
| # handle when either elements or test_elements are Scalars (they can't both be) |
| if not isinstance(elements, torch.Tensor): |
| elements = torch.tensor(elements, device=test_elements.device) |
| if not isinstance(test_elements, torch.Tensor): |
| test_elements = torch.tensor(test_elements, device=elements.device) |
| |
| if test_elements.numel() < 10.0 * pow(elements.numel(), 0.145): |
| return isin_default(elements, test_elements, invert=invert) |
| else: |
| return isin_sorting( |
| elements, test_elements, assume_unique=assume_unique, invert=invert |
| ) |
| |
| |
| def isin_default(elements, test_elements, *, invert=False): |
| if elements.numel() == 0: |
| return torch.empty_like(elements, dtype=torch.bool) |
| |
| x = elements.view(*elements.shape, *((1,) * test_elements.ndim)) |
| if not invert: |
| cmp = x == test_elements |
| else: |
| cmp = x != test_elements |
| dim = tuple(range(-1, -test_elements.ndim - 1, -1)) |
| return cmp.any(dim=dim) |
| |
| |
| def isin_sorting(elements, test_elements, *, assume_unique=False, invert=False): |
| elements_flat = elements.flatten() |
| test_elements_flat = test_elements.flatten() |
| if assume_unique: |
| # This is the same as the aten implementation. For |
| # assume_unique=False, we cannot use unique() here, so we use a |
| # version with searchsorted instead. |
| all_elements = torch.cat([elements_flat, test_elements_flat]) |
| sorted_elements, sorted_order = torch.sort(all_elements, stable=True) |
| |
| duplicate_mask = sorted_elements[1:] == sorted_elements[:-1] |
| duplicate_mask = torch.constant_pad_nd(duplicate_mask, [0, 1], False) |
| |
| if invert: |
| duplicate_mask = duplicate_mask.logical_not() |
| |
| mask = torch.empty_like(duplicate_mask) |
| mask = mask.index_copy(0, sorted_order, duplicate_mask) |
| |
| return mask[0 : elements.numel()] |
| else: |
| sorted_test_elements, _ = torch.sort(test_elements_flat) |
| idx = torch.searchsorted(sorted_test_elements, elements_flat) |
| test_idx = torch.where(idx < sorted_test_elements.numel(), idx, 0) |
| cmp = sorted_test_elements[test_idx] == elements_flat |
| cmp = cmp.logical_not() if invert else cmp |
| return cmp.reshape(elements.shape) |
| |
| |
| @register_decomposition(aten.take) |
| @out_wrapper() |
| def take(self, index): |
| flattened = self.reshape(-1) |
| return flattened[index] |
| |
| |
| @register_decomposition(aten.resize_as) |
| def resize_as(self, other, memory_format=None): |
| if memory_format is None: |
| memory_format = torch.contiguous_format |
| if memory_format == torch.preserve_format: |
| memory_format = suggest_memory_format(other) |
| return aten.resize(self, other.shape, memory_format=memory_format) |
| |
| |
| register_inplace(aten.addbmm_, aten.addbmm) |
| register_inplace(aten.addmm_, aten.addmm) |
| register_inplace(aten.addmv_, aten.addmv) |
| register_inplace(aten.baddbmm_, aten.baddbmm) |
| register_inplace(aten.fill_, aten.fill) |
| register_inplace(aten.gelu_, aten.gelu) |
| register_inplace(aten.hardswish_, aten.hardswish) |
| register_inplace(aten.hardtanh_, aten.hardtanh) |
| register_inplace(aten.hardsigmoid_, aten.hardsigmoid) |
| register_inplace(aten.__iand__, aten.__and__) |
| register_inplace(aten.__ilshift__, aten.__lshift__) |
| register_inplace(aten.index_put_, aten.index_put) |
| register_inplace(aten.index_reduce_, aten.index_reduce) |
| register_inplace(aten.__ior__, aten.__or__) |
| register_inplace(aten.__irshift__, aten.__rshift__) |
| register_inplace(aten.__ixor__, aten.__xor__) |
| register_inplace(aten.leaky_relu_, aten.leaky_relu) |
| register_inplace(aten.logit_, aten.logit) |
| register_inplace(aten.relu_, aten.relu) |
| register_inplace(aten.renorm_, aten.renorm) |
| register_inplace(aten.round_, aten.round) |
| register_inplace(aten.scatter_, aten.scatter) |
| register_inplace(aten.scatter_add_, aten.scatter_add) |
| register_inplace(aten.scatter_reduce_, aten.scatter_reduce) |
| register_inplace(aten.silu_, aten.silu) |