blob: ed7d2a6cf7a1239f666e576df9b01d3ef396c363 [file] [log] [blame]
from torchgen.model import NativeFunctionsGroup
from typing import Dict
def func_name_base_str(g: NativeFunctionsGroup) -> str:
return str(g.functional.func.name.name.base)
is_hand_written_ops_ = frozenset(
(
"add",
"addmm",
"all",
"any",
"argmin",
"bmm",
"clamp",
"cumsum",
"div",
"fmod",
"leaky_relu",
"log",
"mul",
"pow",
"remainder",
"sigmoid",
"sign",
"sub",
"tanh",
)
)
def is_hand_written(g: NativeFunctionsGroup) -> bool:
name_base = func_name_base_str(g)
return name_base in is_hand_written_ops_
def override_test_values(arg_map: Dict[str, str], op_name: str, index: int) -> None:
assert index == 0 or index == 1
if op_name == "addmv":
if index == 0:
arg_map["self"] = "at::rand({2})"
arg_map["mat"] = "at::rand({2, 2})"
arg_map["vec"] = "at::rand({2})"
else:
arg_map["self"] = "at::rand({35})"
arg_map["mat"] = "at::rand({35, 35})"
arg_map["vec"] = "at::rand({35})"
return
if op_name == "acosh":
if index == 0:
arg_map["self"] = "at::rand({2, 2, 2}) + at::ones({2, 2, 2})"
else:
arg_map["self"] = "at::rand({5, 5, 5}) + at::ones({5, 5, 5})"
return
if op_name == "adaptive_max_pool2d_backward":
if index == 0:
arg_map["grad_output"] = "at::randint(-3, 2, {2,2,2})"
arg_map["self"] = "at::randint(-3, 2, {2,2,2})"
arg_map["indices"] = "at::randint(0, 1, {2,2,2}, at::kLong)"
else:
arg_map["grad_output"] = "at::randint(-3, 3, {3,3,3})"
arg_map["self"] = "at::randint(-3, 2, {3,3,3})"
arg_map["indices"] = "at::randint(0, 1, {3,3,3}, at::kLong)"
return
if op_name == "adaptive_max_pool3d_backward":
if index == 0:
arg_map["grad_output"] = "at::randint(-3, 2, {2,2,2,2})"
arg_map["self"] = "at::randint(-3, 2, {2,2,2,2})"
arg_map["indices"] = "at::randint(0, 1, {2,2,2,2}, at::kLong)"
else:
arg_map["grad_output"] = "at::randint(-3, 3, {3,3,3,3})"
arg_map["self"] = "at::randint(-3, 2, {3,3,3,3})"
arg_map["indices"] = "at::randint(0, 1, {3,3,3,3}, at::kLong)"
return
if op_name == "gather":
if index == 0:
arg_map["self"] = "at::randint(1, 100, {2,2,2}, at::kInt)"
arg_map["dim"] = "1"
arg_map["index"] = "at::randint(0, 1, {2,2,2}, torch::kInt64)"
arg_map["sparse_grad"] = "false"
else:
arg_map["self"] = "at::randint(1, 100, {5,5,5}, at::kInt)"
arg_map["dim"] = "1"
arg_map["index"] = "at::randint(0, 4, {5,5,5}, torch::kInt64)"
arg_map["sparse_grad"] = "false"
return
if op_name == "gelu":
if index == 0:
arg_map["self"] = "at::rand({6, 6, 6})"
arg_map["approximate"] = '"tanh"'
else:
arg_map["self"] = "at::rand({22, 22, 22})"
arg_map["approximate"] = '"tanh"'
return
if op_name == "gelu_backward":
if index == 0:
arg_map["grad_output"] = "at::rand({6, 6, 6})"
arg_map["self"] = "at::rand({6, 6, 6})"
arg_map["approximate"] = '"tanh"'
else:
arg_map["grad_output"] = "at::rand({22, 22, 22})"
arg_map["self"] = "at::rand({22, 22, 22})"
arg_map["approximate"] = '"tanh"'
return
if op_name == "index_add":
if index == 0:
arg_map["self"] = "at::rand({2})"
arg_map["dim"] = "0"
arg_map["index"] = "at::randint(0, 1, {2}, at::kInt)"
arg_map["source"] = "at::rand({2})"
arg_map["alpha"] = "2"
else:
arg_map["self"] = "at::rand({16})"
arg_map["dim"] = "0"
arg_map["index"] = "at::randint(0, 10, {16}, at::kInt)"
arg_map["source"] = "at::rand({16})"
arg_map["alpha"] = "2"
return
if op_name == "index_copy":
if index == 0:
arg_map["self"] = "at::rand({2})"
arg_map["dim"] = "0"
arg_map["index"] = "at::randint(0, 1, {2}, at::kLong)"
arg_map["source"] = "at::rand({2})"
else:
arg_map["self"] = "at::rand({32})"
arg_map["dim"] = "0"
arg_map["index"] = "at::randint(0, 10, {32}, at::kLong)"
arg_map["source"] = "at::rand({32})"
return
if op_name == "linalg_cross":
if index == 0:
arg_map["self"] = "at::rand({6, 3, 6})"
arg_map["other"] = "at::rand({6, 3, 6})"
arg_map["dim"] = "1"
else:
arg_map["self"] = "at::rand({22, 3, 22})"
arg_map["other"] = "at::rand({22, 3, 22})"
arg_map["dim"] = "1"
return
if op_name == "nll_loss_backward":
if index == 0:
arg_map["grad_output"] = "at::rand({})"
arg_map["self"] = "at::rand({6})"
arg_map["target"] = "at::randint(0, 5, {6}, torch::kInt64)"
arg_map["weight"] = "at::rand({6})"
arg_map["reduction"] = "1"
arg_map["ignore_index"] = "1"
arg_map["total_weight"] = "at::rand({})"
else:
arg_map["grad_output"] = "at::rand({})"
arg_map["self"] = "at::rand({36})"
arg_map["target"] = "at::randint(0, 11, {36}, torch::kInt64)"
arg_map["weight"] = "at::rand({36})"
arg_map["reduction"] = "1"
arg_map["ignore_index"] = "1"
arg_map["total_weight"] = "at::rand({})"
return
if op_name in ["scatter", "scatter_add", "_scatter_reduce"]:
if index == 0:
arg_map["self"] = "at::randint(1, 100, {2,2,2}, torch::kInt64)"
arg_map["index"] = "at::randint(0, 1, {2,2,2}, torch::kInt64)"
arg_map["src"] = "at::randint(1, 100, {2,2,2}, torch::kInt64)"
else:
arg_map["self"] = "at::randint(1, 100, {5,5,5}, torch::kInt64)"
arg_map["index"] = "at::randint(0, 1, {5,5,5}, torch::kInt64)"
arg_map["src"] = "at::randint(1, 100, {5,5,5}, torch::kInt64)"
if "reduce" in arg_map:
arg_map["reduce"] = '"sum"' if op_name == "_scatter_reduce" else '"add"'
return
if op_name == "special_zeta":
if index == 0:
arg_map["self"] = "at::rand({2,2,2}, at::kDouble) + at::ones({2,2,2})"
arg_map["other"] = "at::rand({2,2,2}, at::kDouble) + at::ones({2,2,2})"
else:
arg_map["self"] = "at::rand({5,5,5}, at::kDouble) + at::ones({5,5,5})"
arg_map["other"] = "at::rand({5,5,5}, at::kDouble) + at::ones({5,5,5})"
return
if op_name == "_convert_indices_from_csr_to_coo":
if index == 0:
arg_map["crow_indices"] = "torch::tensor({1}, torch::kInt32)"
arg_map["col_indices"] = "torch::tensor({0, 1, 0}, torch::kInt32)"
arg_map["out_int32"] = "false"
else:
arg_map["crow_indices"] = "torch::tensor({0}, torch::kInt32)"
arg_map[
"col_indices"
] = "torch::tensor({0, 1, 0, 2, 1, 2, 0, 1, 0, 2, 1, 2}, torch::kInt32)"
arg_map["out_int32"] = "false"
return
if op_name == "_convert_indices_from_coo_to_csr":
if index == 0:
arg_map["self"] = "at::randint(0, 3, {2}, at::kInt)"
arg_map["size"] = "10"
arg_map["out_int32"] = "false"
else:
arg_map["self"] = "at::randint(0, 3, {12}, at::kInt)"
arg_map["size"] = "24"
arg_map["out_int32"] = "false"
return