blob: 970a50ff0e1cdad4fd49e32415e60eaf66b26563 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import sys
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.transformations import optimizeForMKLDNN
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ConvTest(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 10),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 5),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
training_mode=st.booleans(),
group=st.integers(1, 2),
**mu.gcs)
def test_convolution(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, training_mode, group, gc, dc):
training = 1 if training_mode else 0
op = core.CreateOperator(
"Conv",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
training_mode=training,
)
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
if training_mode:
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0], threshold=0.01)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
size=st.integers(8, 10),
input_channels=st.integers(16, 32),
output_channels=st.integers(16, 32),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
training_mode=st.booleans(),
**mu.gcs)
def test_winograd_convolution(self, stride, pad, size,
input_channels, output_channels,
batch_size, use_bias, training_mode, gc, dc):
training = 1 if training_mode else 0
conv3x3_winograd_algorithm = 1
kernel = 3
op = core.CreateOperator(
"Conv",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
training_mode=training,
algorithm=conv3x3_winograd_algorithm
)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
if training_mode:
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0], threshold=0.01)
@given(batch_size=st.integers(1, 3), **mu.gcs)
def test_depthwise_convolution(self, batch_size, gc, dc):
op = core.CreateOperator(
"Conv",
["X", "w", "b"],
["Y"],
stride=1,
pad=0,
kernel=1,
group=4,
device_option=dc[0]
)
op1 = core.CreateOperator(
"Conv",
["X", "w", "b"],
["Y"],
stride=1,
pad=0,
kernel=1,
group=4,
device_option=dc[1]
)
X = np.random.rand(batch_size, 544, 14, 14).astype(np.float32)
w = np.random.rand(544, 136, 1, 1).astype(np.float32)
b = np.random.rand(544).astype(np.float32)
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('w', w, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(op)
Y0 = workspace.FetchBlob('Y')
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('w', w, dc[1])
workspace.FeedBlob('b', b, dc[1])
net = core.Net("net")
old_net = caffe2_pb2.NetDef()
old_net.op.extend([op1])
net.Proto().CopyFrom(old_net)
optimizeForMKLDNN(net)
workspace.RunOperatorOnce(net.Proto().op[0])
Y1 = workspace.FetchBlob('Y')
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1.flatten())
print(Y0.flatten())
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('w', w, dc[1])
workspace.FeedBlob('b', b, dc[1])
workspace.RunOperatorOnce(op1)
Y2 = workspace.FetchBlob('Y')
if not np.allclose(Y0, Y2, atol=0.01, rtol=0.01):
print(Y2.flatten())
print(Y0.flatten())
print(np.max(np.abs(Y2 - Y0)))
self.assertTrue(False)
@unittest.skipIf(sys.version_info.major > 2, "broken in python 3")
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 10),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 5),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
**mu.gcs)
def test_int8_convolution(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, gc, dc):
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, input_channels, kernel, kernel) .astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
conv_fp32 = core.CreateOperator(
"Conv",
["X_fp32", "w_fp32", "b_fp32"] if use_bias else ["X_fp32", "w_fp32"],
["Y_fp32"],
stride=stride,
pad=pad,
kernel=kernel,
training_mode=0,
device_option=dc[0],
)
workspace.FeedBlob('X_fp32', X, dc[0])
workspace.FeedBlob('w_fp32', w, dc[0])
workspace.FeedBlob('b_fp32', b, dc[0])
workspace.RunOperatorOnce(conv_fp32)
Y = workspace.FetchBlob('Y_fp32')
workspace.ResetWorkspace()
Y_absmax = np.array([np.absolute(Y).max()]).astype(np.float32)
if Y.min() >= 0:
Y_scale = Y_absmax / 0xFF
Y_zero_point = 0
else:
Y_scale = Y_absmax / 0x7F
Y_zero_point = 128
X_absmax = np.array([np.absolute(X).max()]).astype(np.float32)
if X.min() >= 0:
X_scale = X_absmax / 0xFF
X_zero_point = 0
else:
X_scale = X_absmax / 0x7F
X_zero_point = 128
w_absmax = np.array([np.absolute(w[i, ...]).max() for i in range(w.shape[0])]).astype(np.float32)
w_scale = w_absmax / 0x7F
w_zero_point = 128
w = np.transpose(w, (0, 2, 3, 1)).astype(np.float32)
w_bytes = np.rint([w[i, ...] / w_scale[i] for i in range(w.shape[0])]).astype(np.int8) + w_zero_point
w_filler = core.CreateOperator(
"Int8GivenTensorFill",
[], ["w"],
shape=w.shape,
values=w_bytes.astype(np.uint8).tobytes(),
Y_zero_point=w_zero_point,
Y_scales=w_scale,
device_option=dc[1],
)
b_scale = w_scale * X_scale
b_zero_point = 0
b_bytes = np.rint([b[i] / b_scale[i] for i in range(b.shape[0])]).astype(np.int32)
b_filler = core.CreateOperator(
"Int8GivenIntTensorFill",
[], ["b"],
shape=b.shape,
values=b_bytes,
Y_zero_point=b_zero_point,
Y_scales=b_scale,
device_option=dc[1],
)
sw2nhwc = core.CreateOperator(
"NCHW2NHWC",
["X"],
["X_nhwc"],
device_option=dc[1]
)
quantize_X = core.CreateOperator(
"Int8Quantize",
["X_nhwc"],
["X_quantized"],
engine="DNNLOWP",
device_option=dc[1],
Y_zero_point=X_zero_point,
Y_scale=X_scale[0],
)
conv = core.CreateOperator(
"Int8Conv",
["X_quantized", "w", "b"] if use_bias else ["X_quantized", "w"],
["Y_quantized"],
stride=stride,
pad=pad,
kernel=kernel,
engine="DNNLOWP",
device_option=dc[1],
Y_zero_point=Y_zero_point,
Y_scale=Y_scale[0],
)
dequantize_Y = core.CreateOperator(
"Int8Dequantize",
["Y_quantized"],
["Y_nhwc"],
engine="DNNLOWP",
device_option=dc[1],
)
sw2nchw = core.CreateOperator(
"NHWC2NCHW",
["Y_nhwc"],
["Y_out"],
device_option=dc[1]
)
net = caffe2_pb2.NetDef()
net.op.extend([w_filler, b_filler, sw2nhwc, quantize_X, conv, dequantize_Y, sw2nchw])
workspace.FeedBlob("X", X, dc[1])
workspace.RunNetOnce(net)
Y_out = workspace.FetchBlob("Y_out")
MSE = np.square(np.subtract(Y, Y_out)).mean()
if MSE > 0.005:
print(Y.flatten())
print(Y_out.flatten())
print(np.max(np.abs(Y_out - Y)))
print("MSE", MSE)
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
if __name__ == "__main__":
unittest.main()