blob: f6bd2f1e2e98c0c219f3b878b065baf787cdfebf [file] [log] [blame]
#include <test/cpp/tensorexpr/test_base.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/tensorexpr/buffer.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/torch.h>
#include <cmath>
#include <sstream>
#include <stdexcept>
namespace torch {
namespace jit {
using namespace torch::indexing;
using namespace torch::jit::tensorexpr;
void testKernel_1() {
KernelScope kernel_scope;
const auto graph_string = R"IR(
graph(%0 : Float(5:3,3:1, device=cpu),
%1 : Float(5:3,3:1, device=cpu)):
%2 : Float(5:3,3:1) = aten::mul(%0, %1)
%3 : Float(5:3,3:1) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
Stmt* s = k.getCodeGenStmt();
// TODO: verify stmt
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
void testKernel_2() {
KernelScope kernel_scope;
const auto graph_string = R"IR(
graph(%0 : Float(5:3,3:1, device=cpu),
%1 : Float(5:1,3:5, device=cpu)):
%2 : Float(5:3,3:1) = aten::mul(%0, %1)
%3 : Float(5:3,3:1) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
Stmt* s = k.getCodeGenStmt();
// TODO: verify stmt
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
void testKernel_3() {
KernelScope kernel_scope;
const auto graph_string = R"IR(
graph(%0 : Float(5:3,3:1, device=cpu),
%1 : Float(5:12,3:2, device=cpu)):
%2 : Float(5:3,3:1) = aten::mul(%0, %1)
%3 : Float(5:3,3:1) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2), Slice(None, None, 2)});
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
Stmt* s = k.getCodeGenStmt();
// TODO: verify stmt
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
void testKernel_4() {
// Test TensorExpr shape inference capabilities: it should only require shapes
// for the inputs
{
KernelScope kernel_scope;
const auto graph_string = R"IR(
graph(%0 : Float(5:3, 3:1, device=cpu),
%1 : Float(5:12, 3:2, device=cpu)):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2), Slice(None, None, 2)});
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
Stmt* s = k.getCodeGenStmt();
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
KernelScope kernel_scope;
const auto graph_string = R"IR(
graph(%0 : Float(8:8, 8:1, device=cpu),
%1 : Float(8:8, 8:1, device=cpu)):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor, %4 : Tensor = prim::ConstantChunk[dim=1,chunks=2](%2)
%r : Tensor = aten::mul(%3, %4)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({8, 4}, TensorOptions(kCPU).dtype(at::kFloat));
auto t = torch::chunk(a * b, 2, 1);
auto ref = t[0] * t[1];
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
Stmt* s = k.getCodeGenStmt();
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
CHECK_EQ(o.sizes()[0], 8);
CHECK_EQ(o.sizes()[1], 4);
for (size_t i = 0; i < 8 * 4; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
// Test that shape inference handles aten::unsqueeze
KernelScope kernel_scope;
const auto graph_string = R"IR(
graph(%a : Float(4:2, 2:1, device=cpu),
%b : Float(4:6, 3:2, 2:1, device=cpu),
%c : Float(3:4, 2:2, 2:1, device=cpu)):
%one : int = prim::Constant[value=1]()
%minus_one : int = prim::Constant[value=-1]()
%three : int = prim::Constant[value=3]()
%minus_four : int = prim::Constant[value=-4]()
%a1 : Tensor = aten::unsqueeze(%a, %one) # new size: [4,1,2]
%a2 : Tensor = aten::unsqueeze(%a1, %minus_one) # new size: [4,1,2,1]
%b1 : Tensor = aten::unsqueeze(%b, %three) # new size: [4,3,2,1]
%c1 : Tensor = aten::unsqueeze(%c, %minus_four) # new size: [1,3,2,2]
%ab : Tensor = aten::mul(%a2, %b1) # expected size: [4,3,2,1]
%abc : Tensor = aten::mul(%ab, %c1) # expected size: [4,3,2,2]
return (%abc))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({4, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({4, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({4, 3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::unsqueeze(at::unsqueeze(a, 1), -1) * at::unsqueeze(b, 3) *
at::unsqueeze(c, -4);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b, c};
Stmt* s = k.getCodeGenStmt();
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
// Check sizes
CHECK_EQ(o.sizes().size(), ref.sizes().size());
size_t num_el = 1;
for (auto idx = 0; idx < ref.sizes().size(); idx++) {
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (size_t i = 0; i < num_el; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
}
} // namespace jit
} // namespace torch