| #include <gtest/gtest.h> |
| |
| #include <torch/data.h> |
| #include <torch/data/detail/sequencers.h> |
| #include <torch/serialize.h> |
| #include <torch/types.h> |
| |
| #include <test/cpp/api/support.h> |
| |
| #include <c10/util/ArrayRef.h> |
| |
| #include <algorithm> |
| #include <chrono> |
| #include <future> |
| #include <iostream> |
| #include <iterator> |
| #include <limits> |
| #include <mutex> |
| #include <stdexcept> |
| #include <string> |
| #include <thread> |
| #include <unordered_set> |
| #include <vector> |
| |
| using namespace torch::data; // NOLINT |
| |
| const std::chrono::milliseconds kMillisecond(1); |
| |
| struct DummyDataset : datasets::Dataset<DummyDataset, int> { |
| int get(size_t index) override { |
| return 1 + index; |
| } |
| torch::optional<size_t> size() const override { |
| return 100; |
| } |
| }; |
| |
| TEST(DataTest, DatasetCallsGetCorrectly) { |
| DummyDataset d; |
| std::vector<int> batch = d.get_batch({0, 1, 2, 3, 4}); |
| std::vector<int> expected = {1, 2, 3, 4, 5}; |
| ASSERT_EQ(batch, expected); |
| } |
| |
| TEST(DataTest, TransformCallsGetApplyCorrectly) { |
| struct T : transforms::Transform<int, std::string> { |
| std::string apply(int input) override { |
| return std::to_string(input); |
| } |
| }; |
| |
| auto d = DummyDataset{}.map(T{}); |
| std::vector<std::string> batch = d.get_batch({0, 1, 2, 3, 4}); |
| std::vector<std::string> expected = {"1", "2", "3", "4", "5"}; |
| ASSERT_EQ(batch, expected); |
| } |
| |
| struct InfiniteStreamDataset |
| : datasets::StreamDataset<InfiniteStreamDataset, std::vector<int>> { |
| std::vector<int> get_batch(size_t batch_size) override { |
| std::vector<int> batch(batch_size); |
| for (auto& i : batch) { |
| i = counter++; |
| } |
| return batch; |
| } |
| |
| torch::optional<size_t> size() const override { |
| return torch::nullopt; |
| } |
| |
| size_t counter = 0; |
| }; |
| |
| TEST(DataTest, InfiniteStreamDataset) { |
| const size_t kBatchSize = 13; |
| |
| auto dataset = InfiniteStreamDataset().map( |
| transforms::Lambda<int>([](int x) { return x + 1; })); |
| |
| auto data_loader = torch::data::make_data_loader( |
| std::move(dataset), |
| kBatchSize, |
| samplers::StreamSampler(/*epoch_size=*/39)); |
| |
| size_t batch_index = 0; |
| for (auto& batch : *data_loader) { |
| ASSERT_LT(batch_index, 3); |
| ASSERT_EQ(batch.size(), kBatchSize); |
| for (size_t j = 0; j < kBatchSize; ++j) { |
| ASSERT_EQ(batch.at(j), 1 + (batch_index * kBatchSize) + j); |
| } |
| batch_index += 1; |
| } |
| ASSERT_EQ(batch_index, 3); |
| } |
| TEST(DataTest, NoSequencerIsIdentity) { |
| using namespace torch::data::detail::sequencers; // NOLINT |
| NoSequencer<int> no_sequencer; |
| const auto value = no_sequencer.next([] { return 5; }).value(); |
| ASSERT_EQ(value, 5); |
| } |
| |
| TEST(DataTest, OrderedSequencerIsSetUpWell) { |
| using namespace torch::data::detail::sequencers; // NOLINT |
| struct S { |
| size_t sequence_number; |
| }; |
| const size_t kMaxJobs = 5; |
| OrderedSequencer<S> sequencer(kMaxJobs); |
| ASSERT_EQ(sequencer.next_sequence_number_, 0); |
| ASSERT_EQ(sequencer.buffer_.size(), kMaxJobs); |
| } |
| |
| TEST(DataTest, OrderedSequencerReOrdersValues) { |
| using namespace torch::data::detail::sequencers; // NOLINT |
| struct S { |
| size_t sequence_number; |
| }; |
| const size_t kMaxJobs = 5; |
| OrderedSequencer<S> sequencer(kMaxJobs); |
| |
| std::vector<size_t> v = {0, 2, 4, 3, 1}; |
| size_t index = 0; |
| auto getter = [&v, &index]() { return S{v.at(index++)}; }; |
| |
| // Let's say the sequence number matches for the first one, then it should |
| // return immediately. |
| const auto first = sequencer.next(getter); |
| ASSERT_EQ(first.value().sequence_number, 0); |
| ASSERT_EQ(index, 1); |
| |
| // Now it should call the getter until it gets the next value. |
| ASSERT_EQ(1, sequencer.next(getter).value().sequence_number); |
| ASSERT_EQ(index, 5); |
| |
| // The next three should come in order. |
| for (size_t i = 2; i <= 4; ++i) { |
| // New value doesn't matter. In fact, it shouldn't be accessed. |
| ASSERT_EQ(i, sequencer.next(getter).value().sequence_number); |
| // The index doesn't change. |
| ASSERT_EQ(index, 5); |
| } |
| } |
| |
| TEST(DataTest, BatchLambdaAppliesFunctionToBatch) { |
| using InputBatch = std::vector<int>; |
| using OutputBatch = std::string; |
| DummyDataset d; |
| auto e = d.map(transforms::BatchLambda<InputBatch, OutputBatch>( |
| [](std::vector<int> input) { |
| return std::to_string(std::accumulate(input.begin(), input.end(), 0)); |
| })); |
| ASSERT_EQ(e.get_batch({1, 2, 3, 4, 5}), std::string("20")); |
| } |
| |
| TEST(DataTest, LambdaAppliesFunctionToExample) { |
| auto d = DummyDataset().map(transforms::Lambda<int, std::string>( |
| static_cast<std::string (*)(int)>(std::to_string))); |
| std::vector<std::string> expected = {"1", "2", "3", "4", "5"}; |
| ASSERT_EQ(d.get_batch({0, 1, 2, 3, 4}), expected); |
| } |
| |
| TEST(DataTest, CollateReducesBatch) { |
| auto d = |
| DummyDataset().map(transforms::Collate<int>([](std::vector<int> input) { |
| return std::accumulate(input.begin(), input.end(), 0); |
| })); |
| ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20); |
| } |
| |
| TEST(DataTest, CollationReducesBatch) { |
| struct Summer : transforms::Collation<int> { |
| int apply_batch(std::vector<int> input) override { |
| return std::accumulate(input.begin(), input.end(), 0); |
| } |
| }; |
| auto d = DummyDataset().map(Summer{}); |
| ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20); |
| } |
| |
| TEST(DataTest, SequentialSamplerReturnsIndicesInOrder) { |
| samplers::SequentialSampler sampler(10); |
| ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2})); |
| ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({3, 4, 5, 6, 7})); |
| ASSERT_EQ(sampler.next(2).value(), std::vector<size_t>({8, 9})); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| } |
| |
| TEST(DataTest, SequentialSamplerReturnsLessValuesForLastBatch) { |
| samplers::SequentialSampler sampler(5); |
| ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2})); |
| ASSERT_EQ(sampler.next(100).value(), std::vector<size_t>({3, 4})); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| } |
| |
| TEST(DataTest, SequentialSamplerResetsWell) { |
| samplers::SequentialSampler sampler(5); |
| ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4})); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| sampler.reset(); |
| ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4})); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| } |
| |
| TEST(DataTest, CanSaveAndLoadSequentialSampler) { |
| { |
| samplers::SequentialSampler a(10); |
| ASSERT_EQ(a.index(), 0); |
| std::stringstream stream; |
| torch::save(a, stream); |
| |
| samplers::SequentialSampler b(10); |
| torch::load(b, stream); |
| ASSERT_EQ(b.index(), 0); |
| } |
| { |
| samplers::SequentialSampler a(10); |
| a.next(3); |
| a.next(4); |
| ASSERT_EQ(a.index(), 7); |
| std::stringstream stream; |
| torch::save(a, stream); |
| |
| samplers::SequentialSampler b(10); |
| torch::load(b, stream); |
| ASSERT_EQ(b.index(), 7); |
| } |
| } |
| |
| TEST(DataTest, RandomSamplerReturnsIndicesInCorrectRange) { |
| samplers::RandomSampler sampler(10); |
| |
| std::vector<size_t> indices = sampler.next(3).value(); |
| for (auto i : indices) { |
| ASSERT_GE(i, 0); |
| ASSERT_LT(i, 10); |
| } |
| |
| indices = sampler.next(5).value(); |
| for (auto i : indices) { |
| ASSERT_GE(i, 0); |
| ASSERT_LT(i, 10); |
| } |
| |
| indices = sampler.next(2).value(); |
| for (auto i : indices) { |
| ASSERT_GE(i, 0); |
| ASSERT_LT(i, 10); |
| } |
| |
| ASSERT_FALSE(sampler.next(10).has_value()); |
| } |
| |
| TEST(DataTest, RandomSamplerReturnsLessValuesForLastBatch) { |
| samplers::RandomSampler sampler(5); |
| ASSERT_EQ(sampler.next(3).value().size(), 3); |
| ASSERT_EQ(sampler.next(100).value().size(), 2); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| } |
| |
| TEST(DataTest, RandomSamplerResetsWell) { |
| samplers::RandomSampler sampler(5); |
| ASSERT_EQ(sampler.next(5).value().size(), 5); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| sampler.reset(); |
| ASSERT_EQ(sampler.next(5).value().size(), 5); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| } |
| |
| TEST(DataTest, SavingAndLoadingRandomSamplerYieldsSameSequence) { |
| { |
| samplers::RandomSampler a(10); |
| |
| std::stringstream stream; |
| torch::save(a, stream); |
| |
| samplers::RandomSampler b(10); |
| torch::load(b, stream); |
| |
| ASSERT_EQ(a.next(10).value(), b.next(10).value()); |
| } |
| { |
| samplers::RandomSampler a(10); |
| a.next(3); |
| ASSERT_EQ(a.index(), 3); |
| |
| std::stringstream stream; |
| torch::save(a, stream); |
| |
| samplers::RandomSampler b(10); |
| torch::load(b, stream); |
| ASSERT_EQ(b.index(), 3); |
| |
| auto b_sequence = b.next(10).value(); |
| ASSERT_EQ(b_sequence.size(), 7); |
| ASSERT_EQ(a.next(10).value(), b_sequence); |
| } |
| } |
| |
| TEST(DataTest, StreamSamplerReturnsTheBatchSizeAndThenRemainder) { |
| samplers::StreamSampler sampler(/*epoch_size=*/100); |
| ASSERT_EQ(sampler.next(10).value(), 10); |
| ASSERT_EQ(sampler.next(2).value(), 2); |
| ASSERT_EQ(sampler.next(85).value(), 85); |
| ASSERT_EQ(sampler.next(123).value(), 3); |
| ASSERT_FALSE(sampler.next(1).has_value()); |
| } |
| |
| TEST(DataTest, StreamSamplerResetsWell) { |
| samplers::StreamSampler sampler(/*epoch_size=*/5); |
| ASSERT_EQ(sampler.next(5).value().size(), 5); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| sampler.reset(); |
| ASSERT_EQ(sampler.next(5).value().size(), 5); |
| ASSERT_FALSE(sampler.next(2).has_value()); |
| } |
| |
| TEST(DataTest, TensorDatasetConstructsFromSingleTensor) { |
| datasets::TensorDataset dataset(torch::eye(5)); |
| ASSERT_TRUE( |
| torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2))); |
| } |
| |
| TEST(DataTest, TensorDatasetConstructsFromInitializerListOfTensors) { |
| std::vector<torch::Tensor> vector = torch::eye(5).chunk(5); |
| datasets::TensorDataset dataset(vector); |
| ASSERT_TRUE( |
| torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2))); |
| } |
| |
| TEST(DataTest, StackTransformWorksForExample) { |
| struct D : public datasets::Dataset<D> { |
| Example<> get(size_t index) override { |
| return {tensor[index], 1 + tensor[index]}; |
| } |
| |
| torch::optional<size_t> size() const override { |
| return tensor.size(0); |
| } |
| |
| torch::Tensor tensor{torch::eye(4)}; |
| }; |
| |
| auto d = D().map(transforms::Stack<Example<>>()); |
| |
| Example<> first = d.get_batch({0, 1}); |
| ASSERT_TRUE(first.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2))); |
| ASSERT_TRUE(first.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 0, 2))); |
| |
| Example<> second = d.get_batch({2, 3}); |
| ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4))); |
| ASSERT_TRUE(second.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 2, 4))); |
| } |
| |
| TEST(DataTest, StackTransformWorksForTensorExample) { |
| auto d = datasets::TensorDataset(torch::eye(4)) |
| .map(transforms::Stack<TensorExample>()); |
| |
| TensorExample first = d.get_batch({0, 1}); |
| ASSERT_TRUE(first.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2))); |
| |
| TensorExample second = d.get_batch({2, 3}); |
| ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4))); |
| } |
| |
| // Template classes cannot be nested in functions. |
| template <typename Target> |
| struct T : transforms::TensorTransform<Target> { |
| torch::Tensor operator()(torch::Tensor input) override { |
| return input * 2; |
| } |
| }; |
| |
| struct TensorStringDataset |
| : datasets:: |
| Dataset<TensorStringDataset, Example<torch::Tensor, std::string>> { |
| Example<torch::Tensor, std::string> get(size_t index) override { |
| return {torch::tensor(static_cast<double>(index)), std::to_string(index)}; |
| } |
| |
| torch::optional<size_t> size() const override { |
| return 100; |
| } |
| }; |
| |
| TEST(DataTest, TensorTransformWorksForAnyTargetType) { |
| auto d = TensorStringDataset().map(T<std::string>{}); |
| std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2}); |
| |
| ASSERT_EQ(batch.size(), 2); |
| ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0))); |
| ASSERT_EQ(batch[0].target, "1"); |
| |
| ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0))); |
| ASSERT_EQ(batch[1].target, "2"); |
| } |
| |
| TEST(DataTest, TensorLambdaWorksforAnyTargetType) { |
| auto d = TensorStringDataset().map(transforms::TensorLambda<std::string>( |
| [](torch::Tensor input) { return input * 2; })); |
| std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2}); |
| |
| ASSERT_EQ(batch.size(), 2); |
| ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0))); |
| ASSERT_EQ(batch[0].target, "1"); |
| |
| ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0))); |
| ASSERT_EQ(batch[1].target, "2"); |
| } |
| |
| struct UnCopyableDataset : public datasets::Dataset<UnCopyableDataset> { |
| UnCopyableDataset() = default; |
| |
| UnCopyableDataset(const UnCopyableDataset&) = delete; |
| UnCopyableDataset& operator=(const UnCopyableDataset&) = delete; |
| |
| UnCopyableDataset(UnCopyableDataset&&) = default; |
| UnCopyableDataset& operator=(UnCopyableDataset&&) = default; |
| |
| ~UnCopyableDataset() = default; |
| |
| Example<> get(size_t index) override { |
| return {torch::tensor(static_cast<int64_t>(index)), |
| torch::tensor(static_cast<int64_t>(index))}; |
| } |
| |
| torch::optional<size_t> size() const override { |
| return 100; |
| } |
| }; |
| |
| TEST(DataTest, MapDoesNotCopy) { |
| auto dataset = UnCopyableDataset() |
| .map(transforms::TensorLambda<>( |
| [](torch::Tensor tensor) { return tensor + 1; })) |
| .map(transforms::TensorLambda<>( |
| [](torch::Tensor tensor) { return tensor + 2; })) |
| .map(transforms::TensorLambda<>( |
| [](torch::Tensor tensor) { return tensor + 3; })); |
| |
| auto data = dataset.get_batch(1).at(0).data; |
| ASSERT_EQ(data.numel(), 1); |
| ASSERT_EQ(data[0].item<float>(), 7); |
| } |
| |
| TEST(DataTest, QueuePushAndPopFromSameThread) { |
| torch::data::detail::Queue<int> queue; |
| queue.push(1); |
| queue.push(2); |
| ASSERT_EQ(queue.pop(), 1); |
| ASSERT_EQ(queue.pop(), 2); |
| } |
| |
| TEST(DataTest, QueuePopWithTimeoutThrowsUponTimeout) { |
| torch::data::detail::Queue<int> queue; |
| ASSERT_THROWS_WITH( |
| queue.pop(10 * kMillisecond), |
| "Timeout in DataLoader queue while waiting for next batch " |
| "(timeout was 10 ms)"); |
| } |
| |
| TEST(DataTest, QueuePushAndPopFromDifferentThreads) { |
| using torch::data::detail::Queue; |
| |
| // First test: push first and the pop in thread. |
| { |
| Queue<int> queue; |
| queue.push(1); |
| auto future = |
| std::async(std::launch::async, [&queue] { return queue.pop(); }); |
| ASSERT_EQ(future.get(), 1); |
| } |
| |
| // Second test: attempt to pop first (and block), then push. |
| { |
| Queue<int> queue; |
| std::thread thread([&queue] { |
| std::this_thread::sleep_for(20 * kMillisecond); |
| queue.push(123); |
| }); |
| ASSERT_EQ(queue.pop(), 123); |
| thread.join(); |
| } |
| } |
| |
| TEST(DataTest, QueueClearEmptiesTheQueue) { |
| torch::data::detail::Queue<int> queue; |
| queue.push(1); |
| queue.push(2); |
| queue.push(3); |
| ASSERT_EQ(queue.clear(), 3); |
| ASSERT_THROWS_WITH(queue.pop(1 * kMillisecond), "Timeout"); |
| } |
| |
| TEST(DataTest, DataShuttleCanPushAndPopJob) { |
| torch::data::detail::DataShuttle<int, int> shuttle; |
| shuttle.push_job(1); |
| shuttle.push_job(2); |
| ASSERT_EQ(shuttle.pop_job(), 1); |
| ASSERT_EQ(shuttle.pop_job(), 2); |
| } |
| |
| TEST(DataTest, DataShuttleCanPushAndPopResult) { |
| torch::data::detail::DataShuttle<int, int> shuttle; |
| // pop_result() will only attempt to pop if there was a push_job() first. |
| shuttle.push_job(1); |
| shuttle.push_job(2); |
| |
| shuttle.pop_job(); |
| shuttle.push_result(1); |
| ASSERT_EQ(shuttle.pop_result().value(), 1); |
| |
| shuttle.pop_job(); |
| shuttle.push_result(2); |
| ASSERT_EQ(shuttle.pop_result().value(), 2); |
| } |
| |
| TEST(DataTest, DataShuttlePopResultReturnsNulloptWhenNoJobsInFlight) { |
| torch::data::detail::DataShuttle<int, int> shuttle; |
| ASSERT_FALSE(shuttle.pop_result().has_value()); |
| shuttle.push_job(1); |
| shuttle.pop_job(); |
| shuttle.push_result(1); |
| ASSERT_EQ(shuttle.pop_result().value(), 1); |
| ASSERT_FALSE(shuttle.pop_result().has_value()); |
| ASSERT_FALSE(shuttle.pop_result().has_value()); |
| } |
| |
| TEST(DataTest, DataShuttleDrainMeansPopResultReturnsNullopt) { |
| torch::data::detail::DataShuttle<int, int> shuttle; |
| shuttle.push_job(1); |
| shuttle.push_result(1); |
| shuttle.drain(); |
| ASSERT_FALSE(shuttle.pop_result().has_value()); |
| } |
| |
| TEST(DataTest, DataShuttlePopResultTimesOut) { |
| torch::data::detail::DataShuttle<int, int> shuttle; |
| shuttle.push_job(1); |
| ASSERT_THROWS_WITH(shuttle.pop_result(10 * kMillisecond), "Timeout"); |
| } |
| |
| struct UncopyableDataset : datasets::Dataset<UncopyableDataset, int> { |
| UncopyableDataset(const std::string& /* unused */) |
| : mutex(torch::make_unique<std::mutex>()) {} |
| |
| UncopyableDataset(UncopyableDataset&&) = default; |
| UncopyableDataset& operator=(UncopyableDataset&&) = default; |
| |
| UncopyableDataset(const UncopyableDataset&) = delete; |
| UncopyableDataset& operator=(const UncopyableDataset&) = delete; |
| |
| int get(size_t index) override { |
| { |
| std::lock_guard<std::mutex> guard(*mutex); |
| thread_ids.insert(std::this_thread::get_id()); |
| } |
| return 1 + index; |
| } |
| torch::optional<size_t> size() const override { |
| return 100; |
| } |
| |
| std::unique_ptr<std::mutex> mutex; |
| std::unordered_set<std::thread::id> thread_ids; |
| }; |
| |
| TEST(DataTest, SharedBatchDatasetReallyIsShared) { |
| auto shared_dataset = |
| torch::data::datasets::make_shared_dataset<UncopyableDataset>( |
| "uncopyable"); |
| auto data_loader = torch::data::make_data_loader( |
| shared_dataset, torch::data::DataLoaderOptions().workers(3)); |
| |
| for (auto batch : *data_loader) { |
| /* exhaust */ |
| } |
| |
| ASSERT_EQ(shared_dataset->thread_ids.size(), 3); |
| } |
| |
| TEST(DataTest, SharedBatchDatasetDoesNotIncurCopyWhenPassedDatasetObject) { |
| // This will not compile if a copy is made. |
| auto shared_dataset = |
| torch::data::datasets::make_shared_dataset<UncopyableDataset>( |
| UncopyableDataset("uncopyable")); |
| ASSERT_EQ(shared_dataset.size().value(), 100); |
| } |
| |
| struct TestIndex : public torch::data::samplers::CustomBatchRequest { |
| explicit TestIndex(size_t offset, std::vector<size_t> index) |
| : offset(offset), index(std::move(index)) {} |
| size_t size() const override { |
| return index.size(); |
| } |
| size_t offset; |
| std::vector<size_t> index; |
| }; |
| |
| struct TestIndexDataset |
| : datasets::BatchDataset<TestIndexDataset, std::vector<int>, TestIndex> { |
| explicit TestIndexDataset(size_t size) : data(size) { |
| std::iota(data.begin(), data.end(), size_t(0)); |
| } |
| std::vector<int> get_batch(TestIndex index) override { |
| std::vector<int> batch; |
| for (auto i : index.index) { |
| batch.push_back(index.offset + data.at(i)); |
| } |
| return batch; |
| } |
| torch::optional<size_t> size() const override { |
| return data.size(); |
| } |
| std::vector<int> data; |
| }; |
| |
| struct TestIndexSampler : public samplers::Sampler<TestIndex> { |
| explicit TestIndexSampler(size_t size) : size_(size) {} |
| void reset() override {} |
| torch::optional<TestIndex> next(size_t batch_size) override { |
| if (index_ >= size_) { |
| return torch::nullopt; |
| } |
| std::vector<size_t> indices(batch_size); |
| std::iota(indices.begin(), indices.end(), size_t(0)); |
| index_ += batch_size; |
| return TestIndex(batch_size, std::move(indices)); |
| } |
| void save(torch::serialize::OutputArchive& archive) const override {} |
| void load(torch::serialize::InputArchive& archive) override {} |
| size_t index_ = 0; |
| size_t size_; |
| }; |
| |
| TEST(DataTest, CanUseCustomTypeAsIndexType) { |
| const size_t kBatchSize = 10; |
| auto data_loader = torch::data::make_data_loader( |
| TestIndexDataset(23), kBatchSize, TestIndexSampler(23)); |
| |
| size_t i = 0; |
| for (auto batch : *data_loader) { |
| for (int j = 0; j < kBatchSize; ++j) { |
| ASSERT_EQ(batch.at(j), 10 + j); |
| } |
| i += 1; |
| } |
| } |
| |
| TEST(DataLoaderTest, DataLoaderOptionsDefaultAsExpected) { |
| DataLoaderOptions partial_options; |
| FullDataLoaderOptions full_options(partial_options); |
| ASSERT_EQ(full_options.batch_size, 1); |
| ASSERT_FALSE(full_options.drop_last); |
| ASSERT_EQ(full_options.workers, 0); |
| ASSERT_EQ(full_options.max_jobs, 0); |
| ASSERT_FALSE(full_options.timeout.has_value()); |
| ASSERT_TRUE(full_options.enforce_ordering); |
| } |
| |
| TEST(DataLoaderTest, DataLoaderOptionsCoalesceOptionalValues) { |
| auto partial_options = DataLoaderOptions(32).workers(10); |
| FullDataLoaderOptions full_options(partial_options); |
| ASSERT_EQ(full_options.batch_size, 32); |
| ASSERT_EQ(full_options.max_jobs, 2 * 10); |
| } |
| |
| TEST(DataLoaderTest, MakeDataLoaderDefaultsAsExpected) { |
| auto data_loader = torch::data::make_data_loader( |
| DummyDataset().map(transforms::Lambda<int>([](int x) { return x + 1; }))); |
| ASSERT_EQ(data_loader->options().batch_size, 1); |
| } |
| |
| struct UnsizedDataset : public datasets::Dataset<UnsizedDataset> { |
| torch::data::Example<> get(size_t i) { |
| return {torch::ones(i), torch::ones(i)}; |
| } |
| torch::optional<size_t> size() const noexcept { |
| return torch::nullopt; |
| } |
| }; |
| |
| TEST( |
| DataLoaderTest, |
| MakeDataLoaderThrowsWhenConstructingSamplerWithUnsizedDataset) { |
| ASSERT_THROWS_WITH( |
| torch::data::make_data_loader(UnsizedDataset{}), |
| "Expected the dataset to be sized in order to construct the Sampler"); |
| } |
| |
| TEST(DataLoaderTest, IteratorsCompareEqualToThemselves) { |
| auto data_loader = torch::data::make_data_loader(DummyDataset(), 32); |
| auto begin = data_loader->begin(); |
| ASSERT_EQ(begin, begin); |
| auto end = data_loader->end(); |
| ASSERT_EQ(end, end); |
| } |
| |
| TEST(DataLoaderTest, ValidIteratorsCompareUnequalToEachOther) { |
| auto data_loader = torch::data::make_data_loader(DummyDataset(), 32); |
| auto i = data_loader->begin(); |
| auto j = data_loader->begin(); |
| ASSERT_NE(i, j); |
| ++j; |
| ASSERT_NE(i, j); |
| } |
| |
| TEST(DataLoaderTest, SentinelIteratorsCompareEqualToEachOther) { |
| auto data_loader = torch::data::make_data_loader(DummyDataset(), 32); |
| auto i = data_loader->end(); |
| auto j = data_loader->end(); |
| ASSERT_EQ(i, j); |
| } |
| |
| TEST(DataLoaderTest, IteratorsCompareEqualToSentinelWhenExhausted) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value() / 4); |
| auto i = data_loader->begin(); |
| auto end = data_loader->end(); |
| ASSERT_NE(i, end); |
| ++i; |
| ASSERT_NE(i, end); |
| ++i; |
| ASSERT_NE(i, end); |
| ++i; |
| ASSERT_NE(i, end); |
| ++i; |
| ASSERT_EQ(i, end); |
| } |
| |
| TEST(DataLoaderTest, IteratorsShareState) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value() / 2); |
| auto i = data_loader->begin(); |
| auto j = i; |
| auto end = data_loader->end(); |
| ASSERT_NE(i, end); |
| ASSERT_NE(j, end); |
| ++i; |
| ASSERT_NE(i, end); |
| ASSERT_NE(j, end); |
| ++j; |
| ASSERT_EQ(i, end); |
| ASSERT_EQ(j, end); |
| } |
| |
| TEST(DataLoaderTest, CanDereferenceIteratorMultipleTimes) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value()); |
| auto i = data_loader->begin(); |
| ASSERT_NE(i, data_loader->end()); |
| ASSERT_EQ(i->size(), dataset.size().value()); |
| ASSERT_NE(i, data_loader->end()); |
| ASSERT_EQ(i->size(), dataset.size().value()); |
| ASSERT_NE(i, data_loader->end()); |
| ASSERT_EQ(i->size(), dataset.size().value()); |
| ASSERT_EQ(++i, data_loader->end()); |
| } |
| |
| TEST(DataLoaderTest, CallingBeginWhileOtherIteratorIsInFlightThrows) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, DataLoaderOptions(1).workers(2)); |
| auto i = data_loader->begin(); |
| ASSERT_THROWS_WITH( |
| data_loader->begin(), |
| "Attempted to get a new DataLoader iterator " |
| "while another iterator is not yet exhausted"); |
| } |
| |
| TEST(DataLoaderTest, IncrementingExhaustedValidIteratorThrows) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value()); |
| auto i = data_loader->begin(); |
| ASSERT_NO_THROW(++i); |
| ASSERT_THROWS_WITH(++i, "Attempted to increment iterator past the end"); |
| } |
| |
| TEST(DataLoaderTest, DereferencingExhaustedValidIteratorThrows) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value()); |
| auto i = data_loader->begin(); |
| ASSERT_NO_THROW(++i); |
| ASSERT_THROWS_WITH( |
| *i, "Attempted to dereference iterator that was past the end"); |
| } |
| |
| TEST(DataLoaderTest, IncrementingSentinelIteratorThrows) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value()); |
| auto i = data_loader->end(); |
| ASSERT_THROWS_WITH( |
| ++i, |
| "Incrementing the DataLoader's past-the-end iterator is not allowed"); |
| } |
| |
| TEST(DataLoaderTest, DereferencingSentinelIteratorThrows) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value()); |
| auto i = data_loader->end(); |
| ASSERT_THROWS_WITH( |
| *i, |
| "Dereferencing the DataLoader's past-the-end iterator is not allowed"); |
| } |
| |
| TEST(DataLoaderTest, YieldsCorrectBatchSize) { |
| DummyDataset dataset; |
| auto data_loader = torch::data::make_data_loader(dataset, 25); |
| auto iterator = data_loader->begin(); |
| ASSERT_EQ(iterator->size(), 25); |
| ASSERT_EQ((++iterator)->size(), 25); |
| ASSERT_EQ((++iterator)->size(), 25); |
| ASSERT_EQ((++iterator)->size(), 25); |
| ASSERT_EQ(++iterator, data_loader->end()); |
| } |
| |
| TEST( |
| DataLoaderTest, |
| ReturnsLastBatchWhenSmallerThanBatchSizeWhenDropLastIsFalse) { |
| DummyDataset dataset; |
| auto data_loader = torch::data::make_data_loader( |
| dataset, DataLoaderOptions(33).drop_last(false)); |
| auto iterator = data_loader->begin(); |
| ASSERT_EQ(iterator->size(), 33); |
| ASSERT_EQ((++iterator)->size(), 33); |
| ASSERT_EQ((++iterator)->size(), 33); |
| ASSERT_EQ((++iterator)->size(), 1); |
| ASSERT_EQ(++iterator, data_loader->end()); |
| } |
| |
| TEST( |
| DataLoaderTest, |
| DoesNotReturnLastBatchWhenSmallerThanBatchSizeWhenDropLastIsTrue) { |
| DummyDataset dataset; |
| auto data_loader = torch::data::make_data_loader( |
| dataset, DataLoaderOptions(33).drop_last(true)); |
| auto iterator = data_loader->begin(); |
| ASSERT_EQ(iterator->size(), 33); |
| ASSERT_EQ((++iterator)->size(), 33); |
| ASSERT_EQ((++iterator)->size(), 33); |
| ASSERT_EQ(++iterator, data_loader->end()); |
| } |
| |
| TEST(DataLoaderTest, RespectsTimeout) { |
| struct Baton { |
| std::condition_variable cv; |
| std::mutex mutex; |
| }; |
| |
| struct D : datasets::Dataset<DummyDataset, int> { |
| D(std::shared_ptr<Baton> b) : baton(std::move(b)) {} |
| int get(size_t index) override { |
| std::unique_lock<std::mutex> lock(baton->mutex); |
| baton->cv.wait_for(lock, 1000 * kMillisecond); |
| return 0; |
| } |
| torch::optional<size_t> size() const override { |
| return 100; |
| } |
| std::shared_ptr<Baton> baton; |
| }; |
| |
| auto baton = std::make_shared<Baton>(); |
| |
| auto data_loader = torch::data::make_data_loader( |
| D{baton}, DataLoaderOptions().workers(1).timeout(10 * kMillisecond)); |
| |
| auto start = std::chrono::system_clock::now(); |
| |
| ASSERT_THROWS_WITH(*data_loader->begin(), "Timeout"); |
| baton->cv.notify_one(); |
| |
| auto end = std::chrono::system_clock::now(); |
| auto duration = std::chrono::duration_cast<std::chrono::seconds>(end - start); |
| ASSERT_LT(duration.count(), 1); |
| } |
| |
| // https://stackoverflow.com/questions/24465533/implementing-boostbarrier-in-c11 |
| struct Barrier { |
| explicit Barrier(size_t target) : counter_(target) {} |
| void wait() { |
| std::unique_lock<std::mutex> lock(mutex_); |
| if (--counter_ == 0) { |
| cv_.notify_all(); |
| } else { |
| cv_.wait(lock, [this] { return this->counter_ == 0; }); |
| } |
| } |
| |
| size_t counter_; |
| std::condition_variable cv_; |
| std::mutex mutex_; |
| }; |
| |
| // On the OrderingTest: This test is intended to verify that the |
| // `enforce_ordering` option of the dataloader works correctly. The reason this |
| // flag exists is because when the dataloader has multiple workers (threads) |
| // enabled and this flag is not set, the order in which worker threads finish |
| // loading their respective batch and push it back to the dataloader's main |
| // thread (for outside consumption) is not deterministic. Imagine the sampler is |
| // a SequentialSampler with indices 0, 1, 2, 3. With batch size 1, each index |
| // will be a single "job". Inside the dataloader, worker threads block until a |
| // job is available. It is not deterministic which worker thread wakes up first |
| // to dequeue a particular batch. Further, some worker threads may take longer |
| // than others to read the data for their index. As such, it could be that |
| // worker thread 2 finishes before all other threads and returns its batch to |
| // the main thread. In that case, the dataloader iterator would return the datum |
| // at index 2 first, and afterwards the datum from whatever thread finishes |
| // next. As such, the user may see data from indices 2, 0, 3, 1. On another run |
| // of the same dataloader on the same data, threads may be scheduled differently |
| // and return in order 0, 2, 3, 1. To force this ordering to deterministically |
| // be 0, 1, 2, 3, the `enforce_ordering` flag can be set to true. In that case, |
| // the dataloader will use a *sequencer* internally which keeps track of which |
| // datum is expected next, and buffers any other results until that next |
| // expected value arrives. For example, workers 1, 2, 3 may finish before worker |
| // 0. If `enforce_ordering` is true, the sequencer will internally buffer the |
| // results from 1, 2, 3 until worker 0 finishes. Only then does the dataloader |
| // return the datum from worker 0 to the user (and then datum 1 the next time, |
| // then 2 and so on). |
| // |
| // The way the test works is that we start |
| // `kNumberOfWorkers` workers in the dataloader, which each get an index from a |
| // `SequentialSampler` in the range `0...kNumberOfWorkers-1`. Each worker thread |
| // has a copy of the dataset, and thus `get_batch()` is called on the |
| // thread-local copy in each worker. We want to simulate out-of-order completion |
| // of these threads. For this, we first set a barrier in the `get_batch()` |
| // method to make sure every worker has some index to fetch assigned. Further, |
| // each worker thread has a unique ID in `0...kNumberOfWorkers-1`. |
| // There is a hard-coded ordering, `kOrderInWhichWorkersReturnTheirBatch`, in |
| // which we want the worker threads to return. For this, an iterator into this |
| // order is maintained. When the derferenced iterator (the current order index) |
| // matches the thread ID of a worker, it knows it can now return its index as |
| // well as progress the iterator. Inside the dataloader, the sequencer should |
| // buffer these indices such that they are ultimately returned in order. |
| |
| namespace ordering_test { |
| namespace { |
| const size_t kNumberOfWorkers = 10; |
| const std::vector<size_t> kOrderInWhichWorkersReturnTheirBatch = |
| {3, 7, 0, 5, 4, 8, 2, 1, 9, 6}; |
| } // namespace |
| |
| struct Dataset : datasets::BatchDataset<Dataset, size_t> { |
| Dataset() = default; |
| |
| // This copy constructor will be called when we copy the dataset into a |
| // particular thread. |
| Dataset(const Dataset& other) { |
| static std::atomic<size_t> counter{0}; |
| thread_id_ = counter.fetch_add(1); |
| } |
| |
| Dataset(Dataset&& other) noexcept = default; |
| Dataset& operator=(const Dataset& other) = delete; |
| Dataset& operator=(Dataset&& other) noexcept = delete; |
| |
| size_t get_batch(torch::ArrayRef<size_t> indices) override { |
| static Barrier barrier(kNumberOfWorkers); |
| static auto order_iterator = kOrderInWhichWorkersReturnTheirBatch.begin(); |
| static std::condition_variable cv; |
| static std::mutex mutex; |
| |
| // Wait for all threads to get an index batch and arrive here. |
| barrier.wait(); |
| |
| std::unique_lock<std::mutex> lock(mutex); |
| cv.wait(lock, [this] { return *order_iterator == this->thread_id_; }); |
| ++order_iterator; |
| lock.unlock(); |
| cv.notify_all(); |
| |
| return indices.front(); |
| } |
| |
| torch::optional<size_t> size() const override { |
| return kNumberOfWorkers; |
| } |
| |
| size_t thread_id_ = 0; |
| }; |
| |
| } // namespace ordering_test |
| |
| TEST(DataLoaderTest, EnforcesOrderingAmongThreadsWhenConfigured) { |
| auto data_loader = torch::data::make_data_loader( |
| ordering_test::Dataset{}, |
| DataLoaderOptions() |
| .batch_size(1) |
| .workers(ordering_test::kNumberOfWorkers) |
| .enforce_ordering(true), |
| torch::data::samplers::SequentialSampler( |
| ordering_test::kNumberOfWorkers)); |
| std::vector<size_t> output; |
| for (size_t value : *data_loader) { |
| output.push_back(value); |
| } |
| std::vector<size_t> expected(ordering_test::kNumberOfWorkers); |
| std::iota(expected.begin(), expected.end(), size_t(0)); |
| ASSERT_EQ(expected, output); |
| } |
| |
| TEST(DataLoaderTest, Reset) { |
| DummyDataset dataset; |
| auto data_loader = |
| torch::data::make_data_loader(dataset, dataset.size().value() / 2); |
| auto end = data_loader->end(); |
| |
| auto iterator = data_loader->begin(); |
| ASSERT_NE(iterator, end); |
| ASSERT_NE(++iterator, end); |
| ASSERT_EQ(++iterator, end); |
| |
| iterator = data_loader->begin(); |
| ASSERT_NE(iterator, end); |
| ASSERT_NE(++iterator, end); |
| ASSERT_EQ(++iterator, end); |
| |
| iterator = data_loader->begin(); |
| ASSERT_NE(iterator, end); |
| ASSERT_NE(++iterator, end); |
| ASSERT_EQ(++iterator, end); |
| } |
| |
| TEST(DataLoaderTest, TestExceptionsArePropagatedFromWorkers) { |
| struct D : datasets::Dataset<DummyDataset, int> { |
| int get(size_t index) override { |
| throw std::invalid_argument("badness"); |
| } |
| torch::optional<size_t> size() const override { |
| return 100; |
| } |
| }; |
| |
| auto data_loader = |
| torch::data::make_data_loader(D{}, DataLoaderOptions().workers(2)); |
| auto iterator = data_loader->begin(); |
| |
| try { |
| (void)*iterator; |
| } catch (torch::data::WorkerException& e) { |
| ASSERT_EQ( |
| e.what(), |
| std::string("Caught exception in DataLoader worker thread. " |
| "Original message: badness")); |
| ASSERT_THROW( |
| std::rethrow_exception(e.original_exception), std::invalid_argument); |
| } |
| } |