| # shape: torch.Size([]) |
| # nnz: 2 |
| # sparse_dim: 0 |
| # indices shape: torch.Size([0, 2]) |
| # values shape: torch.Size([2]) |
| ########## torch.int32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 2)), |
| values=tensor([0, 1]), |
| size=(), nnz=2, dtype=torch.int32, layout=torch.sparse_coo) |
| # _indices |
| tensor([], size=(0, 2), dtype=torch.int64) |
| # _values |
| tensor([0, 1], dtype=torch.int32) |
| ########## torch.float32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 2)), |
| values=tensor([0., 1.]), |
| size=(), nnz=2, dtype=torch.float32, layout=torch.sparse_coo) |
| # after requires_grad_ |
| tensor(indices=tensor([], size=(0, 2)), |
| values=tensor([0., 1.]), |
| size=(), nnz=2, dtype=torch.float32, layout=torch.sparse_coo, |
| requires_grad=True) |
| # after addition |
| tensor(indices=tensor([], size=(0, 2)), |
| values=tensor([0., 2.]), |
| size=(), nnz=2, dtype=torch.float32, layout=torch.sparse_coo, |
| grad_fn=<AddBackward0>) |
| # _indices |
| tensor([], size=(0, 2), dtype=torch.int64) |
| # _values |
| tensor([0., 1.], dtype=torch.float32) |
| |
| # shape: torch.Size([0]) |
| # nnz: 10 |
| # sparse_dim: 0 |
| # indices shape: torch.Size([0, 10]) |
| # values shape: torch.Size([10, 0]) |
| ########## torch.int32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 10)), |
| values=tensor([], size=(10, 0)), |
| size=(0,), nnz=10, dtype=torch.int32, layout=torch.sparse_coo) |
| # _indices |
| tensor([], size=(0, 10), dtype=torch.int64) |
| # _values |
| tensor([], size=(10, 0), dtype=torch.int32) |
| ########## torch.float32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 10)), |
| values=tensor([], size=(10, 0)), |
| size=(0,), nnz=10, dtype=torch.float32, layout=torch.sparse_coo) |
| # after requires_grad_ |
| tensor(indices=tensor([], size=(0, 10)), |
| values=tensor([], size=(10, 0)), |
| size=(0,), nnz=10, dtype=torch.float32, layout=torch.sparse_coo, |
| requires_grad=True) |
| # after addition |
| tensor(indices=tensor([], size=(0, 10)), |
| values=tensor([], size=(10, 0)), |
| size=(0,), nnz=10, dtype=torch.float32, layout=torch.sparse_coo, |
| grad_fn=<AddBackward0>) |
| # _indices |
| tensor([], size=(0, 10), dtype=torch.int64) |
| # _values |
| tensor([], size=(10, 0), dtype=torch.float32) |
| |
| # shape: torch.Size([2]) |
| # nnz: 3 |
| # sparse_dim: 0 |
| # indices shape: torch.Size([0, 3]) |
| # values shape: torch.Size([3, 2]) |
| ########## torch.int32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([[0, 0], |
| [0, 1], |
| [1, 1]]), |
| size=(2,), nnz=3, dtype=torch.int32, layout=torch.sparse_coo) |
| # _indices |
| tensor([], size=(0, 3), dtype=torch.int64) |
| # _values |
| tensor([[0, 0], |
| [0, 1], |
| [1, 1]], dtype=torch.int32) |
| ########## torch.float32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([[0.0000, 0.3333], |
| [0.6667, 1.0000], |
| [1.3333, 1.6667]]), |
| size=(2,), nnz=3, dtype=torch.float32, layout=torch.sparse_coo) |
| # after requires_grad_ |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([[0.0000, 0.3333], |
| [0.6667, 1.0000], |
| [1.3333, 1.6667]]), |
| size=(2,), nnz=3, dtype=torch.float32, layout=torch.sparse_coo, |
| requires_grad=True) |
| # after addition |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([[0.0000, 0.6667], |
| [1.3333, 2.0000], |
| [2.6667, 3.3333]]), |
| size=(2,), nnz=3, dtype=torch.float32, layout=torch.sparse_coo, |
| grad_fn=<AddBackward0>) |
| # _indices |
| tensor([], size=(0, 3), dtype=torch.int64) |
| # _values |
| tensor([[0.0000, 0.3333], |
| [0.6667, 1.0000], |
| [1.3333, 1.6667]], dtype=torch.float32) |
| |
| # shape: torch.Size([100, 3]) |
| # nnz: 3 |
| # sparse_dim: 1 |
| # indices shape: torch.Size([1, 3]) |
| # values shape: torch.Size([3, 3]) |
| ########## torch.int32 ########## |
| # sparse tensor |
| tensor(indices=tensor([[0, 1, 2]]), |
| values=tensor([[0, 0, 0], |
| [0, 0, 1], |
| [1, 1, 1]]), |
| size=(100, 3), nnz=3, dtype=torch.int32, layout=torch.sparse_coo) |
| # _indices |
| tensor([[0, 1, 2]]) |
| # _values |
| tensor([[0, 0, 0], |
| [0, 0, 1], |
| [1, 1, 1]], dtype=torch.int32) |
| ########## torch.float32 ########## |
| # sparse tensor |
| tensor(indices=tensor([[0, 1, 2]]), |
| values=tensor([[0.0000, 0.2222, 0.4444], |
| [0.6667, 0.8889, 1.1111], |
| [1.3333, 1.5556, 1.7778]]), |
| size=(100, 3), nnz=3, dtype=torch.float32, layout=torch.sparse_coo) |
| # after requires_grad_ |
| tensor(indices=tensor([[0, 1, 2]]), |
| values=tensor([[0.0000, 0.2222, 0.4444], |
| [0.6667, 0.8889, 1.1111], |
| [1.3333, 1.5556, 1.7778]]), |
| size=(100, 3), nnz=3, dtype=torch.float32, layout=torch.sparse_coo, |
| requires_grad=True) |
| # after addition |
| tensor(indices=tensor([[0, 1, 2]]), |
| values=tensor([[0.0000, 0.4444, 0.8889], |
| [1.3333, 1.7778, 2.2222], |
| [2.6667, 3.1111, 3.5556]]), |
| size=(100, 3), nnz=3, dtype=torch.float32, layout=torch.sparse_coo, |
| grad_fn=<AddBackward0>) |
| # _indices |
| tensor([[0, 1, 2]]) |
| # _values |
| tensor([[0.0000, 0.2222, 0.4444], |
| [0.6667, 0.8889, 1.1111], |
| [1.3333, 1.5556, 1.7778]], dtype=torch.float32) |
| |
| # shape: torch.Size([100, 20, 3]) |
| # nnz: 0 |
| # sparse_dim: 2 |
| # indices shape: torch.Size([2, 0]) |
| # values shape: torch.Size([0, 3]) |
| ########## torch.int32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(2, 0)), |
| values=tensor([], size=(0, 3)), |
| size=(100, 20, 3), nnz=0, dtype=torch.int32, layout=torch.sparse_coo) |
| # _indices |
| tensor([], size=(2, 0), dtype=torch.int64) |
| # _values |
| tensor([], size=(0, 3), dtype=torch.int32) |
| ########## torch.float32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(2, 0)), |
| values=tensor([], size=(0, 3)), |
| size=(100, 20, 3), nnz=0, dtype=torch.float32, layout=torch.sparse_coo) |
| # after requires_grad_ |
| tensor(indices=tensor([], size=(2, 0)), |
| values=tensor([], size=(0, 3)), |
| size=(100, 20, 3), nnz=0, dtype=torch.float32, layout=torch.sparse_coo, |
| requires_grad=True) |
| # after addition |
| tensor(indices=tensor([], size=(2, 0)), |
| values=tensor([], size=(0, 3)), |
| size=(100, 20, 3), nnz=0, dtype=torch.float32, layout=torch.sparse_coo, |
| grad_fn=<AddBackward0>) |
| # _indices |
| tensor([], size=(2, 0), dtype=torch.int64) |
| # _values |
| tensor([], size=(0, 3), dtype=torch.float32) |
| |
| # shape: torch.Size([10, 0, 3]) |
| # nnz: 3 |
| # sparse_dim: 0 |
| # indices shape: torch.Size([0, 3]) |
| # values shape: torch.Size([3, 10, 0, 3]) |
| ########## torch.int32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([], size=(3, 10, 0, 3)), |
| size=(10, 0, 3), nnz=3, dtype=torch.int32, layout=torch.sparse_coo) |
| # _indices |
| tensor([], size=(0, 3), dtype=torch.int64) |
| # _values |
| tensor([], size=(3, 10, 0, 3), dtype=torch.int32) |
| ########## torch.float32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([], size=(3, 10, 0, 3)), |
| size=(10, 0, 3), nnz=3, dtype=torch.float32, layout=torch.sparse_coo) |
| # after requires_grad_ |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([], size=(3, 10, 0, 3)), |
| size=(10, 0, 3), nnz=3, dtype=torch.float32, layout=torch.sparse_coo, |
| requires_grad=True) |
| # after addition |
| tensor(indices=tensor([], size=(0, 3)), |
| values=tensor([], size=(3, 10, 0, 3)), |
| size=(10, 0, 3), nnz=3, dtype=torch.float32, layout=torch.sparse_coo, |
| grad_fn=<AddBackward0>) |
| # _indices |
| tensor([], size=(0, 3), dtype=torch.int64) |
| # _values |
| tensor([], size=(3, 10, 0, 3), dtype=torch.float32) |
| |
| # shape: torch.Size([10, 0, 3]) |
| # nnz: 0 |
| # sparse_dim: 0 |
| # indices shape: torch.Size([0, 0]) |
| # values shape: torch.Size([0, 10, 0, 3]) |
| ########## torch.int32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 0)), |
| values=tensor([], size=(0, 10, 0, 3)), |
| size=(10, 0, 3), nnz=0, dtype=torch.int32, layout=torch.sparse_coo) |
| # _indices |
| tensor([], size=(0, 0), dtype=torch.int64) |
| # _values |
| tensor([], size=(0, 10, 0, 3), dtype=torch.int32) |
| ########## torch.float32 ########## |
| # sparse tensor |
| tensor(indices=tensor([], size=(0, 0)), |
| values=tensor([], size=(0, 10, 0, 3)), |
| size=(10, 0, 3), nnz=0, dtype=torch.float32, layout=torch.sparse_coo) |
| # after requires_grad_ |
| tensor(indices=tensor([], size=(0, 0)), |
| values=tensor([], size=(0, 10, 0, 3)), |
| size=(10, 0, 3), nnz=0, dtype=torch.float32, layout=torch.sparse_coo, |
| requires_grad=True) |
| # after addition |
| tensor(indices=tensor([], size=(0, 0)), |
| values=tensor([], size=(0, 10, 0, 3)), |
| size=(10, 0, 3), nnz=0, dtype=torch.float32, layout=torch.sparse_coo, |
| grad_fn=<AddBackward0>) |
| # _indices |
| tensor([], size=(0, 0), dtype=torch.int64) |
| # _values |
| tensor([], size=(0, 10, 0, 3), dtype=torch.float32) |