blob: fc6cff7512005b67308075a1b4bea49b41713e1a [file] [log] [blame]
#include <torch/script.h>
#include "op.h"
#include <cstddef>
#include <string>
torch::List<torch::Tensor> custom_op(
torch::Tensor tensor,
double scalar,
int64_t repeat) {
torch::List<torch::Tensor> output;
output.reserve(repeat);
for (int64_t i = 0; i < repeat; ++i) {
output.push_back(tensor * scalar);
}
return output;
}
int64_t custom_op2(std::string s1, std::string s2) {
return s1.compare(s2);
}
struct CustomOpAutogradFunction : public torch::autograd::Function<CustomOpAutogradFunction> {
static torch::Tensor forward(torch::autograd::AutogradContext *ctx, torch::Tensor var1, int64_t mul, torch::Tensor var2) {
ctx->saved_data["mul"] = mul;
ctx->save_for_backward({var1, var2});
return var1 + mul*var2 + var1*var2;
}
static torch::autograd::variable_list backward(torch::autograd::AutogradContext *ctx, torch::autograd::variable_list grad_output) {
int mul = ctx->saved_data["mul"].toInt();
auto saved = ctx->get_saved_variables();
auto var1 = saved[0];
auto var2 = saved[1];
torch::autograd::variable_list output = {grad_output[0] + grad_output[0]*var2, torch::Tensor(), grad_output[0] * mul + grad_output[0] * var1};
return output;
}
};
torch::Tensor custom_op_with_autograd(torch::Tensor var1, int64_t mul, torch::Tensor var2) {
return CustomOpAutogradFunction::apply(var1, mul, var2);
}
static auto registry =
torch::RegisterOperators()
// We parse the schema for the user.
.op("custom::op", &custom_op)
.op("custom::op2", &custom_op2)
// User provided schema. Among other things, allows defaulting values,
// because we cannot infer default values from the signature. It also
// gives arguments meaningful names.
.op("custom::op_with_defaults(Tensor tensor, float scalar = 1, int repeat = 1) -> Tensor[]",
&custom_op)
.op("custom::op_with_autograd(Tensor var1, int mul, Tensor var2) -> Tensor",
&custom_op_with_autograd);