blob: ae1f5e95383424a14f20b402cce224979e6710c7 [file] [log] [blame]
from __future__ import division
import unittest
import torch
import torch.backends.xnnpack
from torch.nn import functional as F
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests
from hypothesis import given, assume
from hypothesis import strategies as st
import io
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
class TestXNNPACKOps(TestCase):
@given(batch_size=st.integers(0, 3),
data_shape=hu.array_shapes(1, 3, 2, 64),
weight_output_dim=st.integers(2, 64),
use_bias=st.booleans(),
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias, format):
data_shape = [batch_size] + list(data_shape)
input_data = torch.rand(data_shape)
if ((format is not None) and ((format != torch.channels_last) or (len(data_shape) == 4))):
input_data = input_data.contiguous(memory_format=format)
weight = torch.rand((weight_output_dim, data_shape[-1]))
if use_bias:
bias = torch.rand((weight_output_dim))
else:
bias = None
ref_result = F.linear(input_data, weight, bias)
packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
output_linearprepacked = torch.ops.prepacked.linear_clamp_run(input_data, packed_weight_bias)
torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3)
@given(batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans(),
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
def test_conv2d(self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
use_bias,
format):
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0]
>= dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1]
>= dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
if (format is not None):
input_data = input_data.contiguous(memory_format=format)
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
bias = None
if use_bias:
bias = torch.rand((output_channels))
ref_result = F.conv2d(input_data, weight, bias,
strides, paddings, dilations, groups)
packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(weight, bias,
strides, paddings, dilations, groups)
xnnpack_result = torch.ops.prepacked.conv2d_clamp_run(input_data, packed_weight_bias)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
class TestXNNPACKSerDes(TestCase):
@given(batch_size=st.integers(0, 3),
data_shape=hu.array_shapes(1, 3, 2, 64),
weight_output_dim=st.integers(2, 64),
use_bias=st.booleans(),
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias, format):
class Linear(torch.nn.Module):
def __init__(self, weight, bias=None):
super(Linear, self).__init__()
self.weight = weight
self.bias = bias
def forward(self, x):
return F.linear(x, self.weight, self.bias)
class LinearPrePacked(torch.nn.Module):
def __init__(self, weight, bias=None):
super(LinearPrePacked, self).__init__()
self.packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
def forward(self, x):
return torch.ops.prepacked.linear_clamp_run(x, self.packed_weight_bias)
data_shape = [batch_size] + list(data_shape)
weight = torch.rand((weight_output_dim, data_shape[-1]))
if use_bias:
bias = torch.rand((weight_output_dim))
else:
bias = None
scripted_linear = torch.jit.script(Linear(weight, bias))
scripted_linear_clamp_prepacked = torch.jit.script(LinearPrePacked(weight, bias))
input_data = torch.rand(data_shape)
if ((format is not None) and ((format != torch.channels_last) or (len(data_shape) == 4))):
input_data = input_data.contiguous(memory_format=format)
ref_result = scripted_linear(input_data)
output_linearprepacked = scripted_linear_clamp_prepacked(input_data)
torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand(data_shape)
if ((format is not None) and ((format != torch.channels_last) or (len(data_shape) == 4))):
input_data = input_data.contiguous(memory_format=format)
buffer = io.BytesIO()
torch.jit.save(scripted_linear, buffer)
buffer.seek(0)
deserialized_linear = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_linear_clamp_prepacked, buffer)
buffer.seek(0)
deserialized_linear_clamp_prepacked = torch.jit.load(buffer)
ref_result = deserialized_linear(input_data)
output_linearprepacked = deserialized_linear_clamp_prepacked(input_data)
torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3)
@given(batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans(),
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
def test_conv2d(self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
use_bias,
format):
class Conv2D(torch.nn.Module):
def __init__(self, weight, bias, strides, paddings, dilations, groups):
super(Conv2D, self).__init__()
self.weight = weight
self.bias = bias
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
class Conv2DPrePacked(torch.nn.Module):
def __init__(self, weight, bias, strides, paddings, dilations, groups):
super(Conv2DPrePacked, self).__init__()
self.packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(weight, bias,
strides, paddings, dilations, groups)
def forward(self, x):
return torch.ops.prepacked.conv2d_clamp_run(x, self.packed_weight_bias)
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >=
dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >=
dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
if (format is not None):
input_data = input_data.contiguous(memory_format=format)
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
bias = None
if use_bias:
bias = torch.rand((output_channels))
scripted_conv2d = torch.jit.script(Conv2D(weight, bias,
strides, paddings, dilations, groups))
scripted_conv2d_clamp_prepacked = torch.jit.script(Conv2DPrePacked(
weight, bias, strides, paddings, dilations, groups))
ref_result = scripted_conv2d(input_data)
xnnpack_result = scripted_conv2d_clamp_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand((batch_size, input_channels, height, width))
if (format is not None):
input_data = input_data.contiguous(memory_format=format)
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d, buffer)
buffer.seek(0)
deserialized_conv2d = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d_clamp_prepacked, buffer)
buffer.seek(0)
deserialized_conv2d_clamp_prepacked = torch.jit.load(buffer)
ref_result = deserialized_conv2d(input_data)
xnnpack_result = deserialized_conv2d_clamp_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@given(batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
linear_weight_output_dim=st.integers(2, 64),
use_bias=st.booleans(),
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
def test_combined_model(self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
linear_weight_output_dim,
use_bias,
format):
class M(torch.nn.Module):
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
strides, paddings, dilations, groups):
super(M, self).__init__()
self.conv_weight = conv_weight
self.conv_bias = conv_bias
self.linear_weight = linear_weight
self.linear_bias = linear_bias
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(x, self.conv_weight, self.conv_bias,
self.strides, self.paddings, self.dilations, self.groups)
o = o.permute([0, 2, 3, 1])
o = F.linear(o, self.linear_weight, self.linear_bias)
return F.relu(o)
class MPrePacked(torch.nn.Module):
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
strides, paddings, dilations, groups):
super(MPrePacked, self).__init__()
self.conv2d_clamp_run_weight_bias = \
torch.ops.prepacked.conv2d_clamp_prepack(conv_weight, conv_bias,
strides, paddings, dilations, groups)
self.linear_clamp_run_weight_bias = \
torch.ops.prepacked.linear_clamp_prepack(linear_weight, linear_bias)
def forward(self, x):
o = torch.ops.prepacked.conv2d_clamp_run(x, self.conv2d_clamp_run_weight_bias)
o = o.permute([0, 2, 3, 1])
o = torch.ops.prepacked.linear_clamp_run(o, self.linear_clamp_run_weight_bias)
return F.relu(o)
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0]
>= dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1]
>= dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
if (format is not None):
input_data = input_data.contiguous(memory_format=format)
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
conv_bias = None
if use_bias:
conv_bias = torch.rand((output_channels))
# This is done just to find the output shape of the result
# so that the shape of weight for the following linear layer
# can be determined.
result = F.conv2d(input_data, conv_weight, conv_bias,
strides, paddings, dilations, groups)
linear_input_shape = result.shape[1]
linear_weight = torch.rand((linear_weight_output_dim, linear_input_shape))
linear_bias = None
if use_bias:
linear_bias = torch.rand((linear_weight_output_dim))
scripted_m = torch.jit.script(M(conv_weight, conv_bias, linear_weight,
linear_bias, strides, paddings, dilations, groups))
scripted_m_prepacked = torch.jit.script(
MPrePacked(
conv_weight,
conv_bias,
linear_weight,
linear_bias,
strides,
paddings,
dilations,
groups))
ref_result = scripted_m(input_data)
xnnpack_result = scripted_m_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand((batch_size, input_channels, height, width))
input_data = input_data.contiguous(memory_format=torch.channels_last)
buffer = io.BytesIO()
torch.jit.save(scripted_m, buffer)
buffer.seek(0)
deserialized_m = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_m_prepacked, buffer)
buffer.seek(0)
deserialized_m_prepacked = torch.jit.load(buffer)
ref_result = deserialized_m(input_data)
xnnpack_result = deserialized_m_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
class TestXNNPACKRewritePass(TestCase):
def test_linear(self):
def validate_transformed_module(
module_instance,
pattern_count_map,
data_shape,
prepack_removal=False,
fuse_clamping_ops=False):
scripted_model = torch.jit.script(module_instance)
scripted_model.eval()
input_data = torch.normal(1, 20, size=data_shape)
ref_result = scripted_model(input_data)
torch._C._jit_pass_insert_prepacked_ops(scripted_model._c)
if fuse_clamping_ops or prepack_removal:
scripted_model._c = torch._C._freeze_module(scripted_model._c)
if fuse_clamping_ops:
torch._C._jit_pass_fuse_clamp_w_prepacked_linear_conv(scripted_model._c)
if (prepack_removal):
torch._C._jit_pass_fold_prepacking_ops(scripted_model._c)
buffer = io.BytesIO()
torch.jit.save(scripted_model, buffer)
buffer.seek(0)
deserialized_scripted_model = torch.jit.load(buffer)
for pattern, v in pattern_count_map.items():
if (v == 0):
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
elif (v == -1):
FileCheck().check_not(pattern).run(deserialized_scripted_model.graph)
else:
FileCheck().check_count(pattern, v, exactly=True).run(deserialized_scripted_model.graph)
xnnpack_result = deserialized_scripted_model(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
data_shape = [2, 3, 32]
weight_output_dim = 24
weight_shape = (weight_output_dim, data_shape[-1])
class Linear(torch.nn.Module):
def __init__(self):
super(Linear, self).__init__()
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape)))
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))))
def forward(self, x):
return F.linear(x, self.weight, self.bias)
class LinearNoBias(torch.nn.Module):
def __init__(self):
super(LinearNoBias, self).__init__()
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape)))
def forward(self, x):
return F.linear(x, self.weight, None)
# Linear with bias pattern.
pattern_count_map = {"Tensor = prim::CallFunction": -1,
"prepacked::linear_clamp_prepack": 1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(Linear(), pattern_count_map, data_shape)
validate_transformed_module(LinearNoBias(), pattern_count_map, data_shape)
# Conv params
batch_size = 2
input_channels_per_group = 6
height = 16
width = 16
output_channels_per_group = 6
groups = 4
kernel_h = kernel_w = 3
stride_h = stride_w = 1
pad_h = pad_w = 1
dilation = 1
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
conv_bias_shape = (output_channels)
class Conv2D(torch.nn.Module):
def __init__(self):
super(Conv2D, self).__init__()
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)))
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)))
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack": 1,
"prepacked::conv2d_clamp_run": 1}
validate_transformed_module(Conv2D(), pattern_count_map, data_shape)
input_data = torch.rand((batch_size, input_channels, height, width))
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
conv_bias = torch.rand((output_channels))
result = F.conv2d(input_data, conv_weight, conv_bias,
strides, paddings, dilations, groups)
linear_input_shape = result.shape[1]
linear_weight_shape = (weight_output_dim, linear_input_shape)
class M(torch.nn.Module):
def __init__(self, activation_fn=F.relu):
super(M, self).__init__()
self.conv_weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)))
self.conv_bias = torch.nn.Parameter(torch.Tensor(torch.rand((conv_bias_shape))))
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)))
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))))
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
self.activation_fn = activation_fn
def forward(self, x):
o = F.conv2d(x, self.conv_weight, self.conv_bias,
self.strides, self.paddings, self.dilations, self.groups)
o = self.activation_fn(o)
o = o.permute([0, 2, 3, 1])
o = F.linear(o, self.linear_weight, self.linear_bias)
return self.activation_fn(o)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack": 1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": 1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(M(), pattern_count_map, data_shape)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["Tensor = prim::CallFunction"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True)
# Not inplace relu fusion test.
pattern_count_map = {"aten::relu": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::relu"] = -1
validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True, fuse_clamping_ops=True)
# Inplace relu fusion test.
pattern_count_map = {"aten::relu": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(M(F.relu_), pattern_count_map, data_shape, prepack_removal=True)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::relu"] = -1
validate_transformed_module(M(F.relu_), pattern_count_map, data_shape,
prepack_removal=True, fuse_clamping_ops=True)
# Not inplace hardtanh fusion test.
pattern_count_map = {"aten::hardtanh": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(M(F.hardtanh), pattern_count_map, data_shape, prepack_removal=True)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::hardtanh"] = -1
validate_transformed_module(M(F.hardtanh), pattern_count_map, data_shape,
prepack_removal=True, fuse_clamping_ops=True)
# Inplace hardtanh fusion test.
pattern_count_map = {"aten::hardtanh_": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(M(F.hardtanh_), pattern_count_map, data_shape, prepack_removal=True)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::hardtanh_"] = -1
validate_transformed_module(M(F.hardtanh_), pattern_count_map, data_shape,
prepack_removal=True, fuse_clamping_ops=True)
class MFusionAntiPattern(torch.nn.Module):
def __init__(self):
super(MFusionAntiPattern, self).__init__()
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)))
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))))
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.linear(x, self.linear_weight, self.linear_bias)
o = F.relu(o)
o = F.hardtanh(o)
return o
# Unfusable hardtanh.
pattern_count_map = {"aten::hardtanh": 1, # hardtanh cannot be.
"aten::relu": -1, # relu is fused.
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(MFusionAntiPattern(), pattern_count_map, (16, linear_weight_shape[1]),
prepack_removal=True, fuse_clamping_ops=True)
class MFusionAntiPatternParamMinMax(torch.nn.Module):
def __init__(self):
super(MFusionAntiPatternParamMinMax, self).__init__()
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)))
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))))
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
min = x[0, 0]
max = min + 10
o = F.linear(x, self.linear_weight, self.linear_bias)
o = F.hardtanh(o, min, max)
return o
# Unfusable hardtanh.
pattern_count_map = {"aten::hardtanh": 1, # hardtanh cannot be.
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1}
validate_transformed_module(MFusionAntiPatternParamMinMax(), pattern_count_map, (16, linear_weight_shape[1]),
prepack_removal=True, fuse_clamping_ops=True)
if __name__ == "__main__":
run_tests()