| from __future__ import division |
| |
| import unittest |
| |
| import torch |
| import torch.backends.xnnpack |
| from torch.nn import functional as F |
| from torch.testing import FileCheck |
| import torch.testing._internal.hypothesis_utils as hu |
| from torch.testing._internal.common_utils import TestCase, run_tests |
| from hypothesis import given, assume |
| from hypothesis import strategies as st |
| import io |
| |
| |
| @unittest.skipUnless(torch.backends.xnnpack.enabled, |
| " XNNPACK must be enabled for these tests." |
| " Please build with USE_XNNPACK=1.") |
| class TestXNNPACKOps(TestCase): |
| @given(batch_size=st.integers(0, 3), |
| data_shape=hu.array_shapes(1, 3, 2, 64), |
| weight_output_dim=st.integers(2, 64), |
| use_bias=st.booleans(), |
| format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last])) |
| def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias, format): |
| data_shape = [batch_size] + list(data_shape) |
| input_data = torch.rand(data_shape) |
| if ((format is not None) and ((format != torch.channels_last) or (len(data_shape) == 4))): |
| input_data = input_data.contiguous(memory_format=format) |
| weight = torch.rand((weight_output_dim, data_shape[-1])) |
| if use_bias: |
| bias = torch.rand((weight_output_dim)) |
| else: |
| bias = None |
| ref_result = F.linear(input_data, weight, bias) |
| packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias) |
| output_linearprepacked = torch.ops.prepacked.linear_clamp_run(input_data, packed_weight_bias) |
| torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3) |
| |
| @given(batch_size=st.integers(0, 3), |
| input_channels_per_group=st.integers(1, 32), |
| height=st.integers(5, 64), |
| width=st.integers(5, 64), |
| output_channels_per_group=st.integers(1, 32), |
| groups=st.integers(1, 16), |
| kernel_h=st.integers(1, 7), |
| kernel_w=st.integers(1, 7), |
| stride_h=st.integers(1, 2), |
| stride_w=st.integers(1, 2), |
| pad_h=st.integers(0, 2), |
| pad_w=st.integers(0, 2), |
| dilation=st.integers(1, 2), |
| use_bias=st.booleans(), |
| format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last])) |
| def test_conv2d(self, |
| batch_size, |
| input_channels_per_group, |
| height, |
| width, |
| output_channels_per_group, |
| groups, |
| kernel_h, |
| kernel_w, |
| stride_h, |
| stride_w, |
| pad_h, |
| pad_w, |
| dilation, |
| use_bias, |
| format): |
| input_channels = input_channels_per_group * groups |
| output_channels = output_channels_per_group * groups |
| kernels = (kernel_h, kernel_w) |
| strides = (stride_h, stride_w) |
| paddings = (pad_h, pad_w) |
| dilations = (dilation, dilation) |
| assume(height + 2 * paddings[0] |
| >= dilations[0] * (kernels[0] - 1) + 1) |
| assume(width + 2 * paddings[1] |
| >= dilations[1] * (kernels[1] - 1) + 1) |
| |
| input_data = torch.rand((batch_size, input_channels, height, width)) |
| if (format is not None): |
| input_data = input_data.contiguous(memory_format=format) |
| weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w)) |
| bias = None |
| if use_bias: |
| bias = torch.rand((output_channels)) |
| |
| ref_result = F.conv2d(input_data, weight, bias, |
| strides, paddings, dilations, groups) |
| packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(weight, bias, |
| strides, paddings, dilations, groups) |
| xnnpack_result = torch.ops.prepacked.conv2d_clamp_run(input_data, packed_weight_bias) |
| torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3) |
| |
| |
| @unittest.skipUnless(torch.backends.xnnpack.enabled, |
| " XNNPACK must be enabled for these tests." |
| " Please build with USE_XNNPACK=1.") |
| class TestXNNPACKSerDes(TestCase): |
| @given(batch_size=st.integers(0, 3), |
| data_shape=hu.array_shapes(1, 3, 2, 64), |
| weight_output_dim=st.integers(2, 64), |
| use_bias=st.booleans(), |
| format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last])) |
| def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias, format): |
| class Linear(torch.nn.Module): |
| def __init__(self, weight, bias=None): |
| super(Linear, self).__init__() |
| self.weight = weight |
| self.bias = bias |
| |
| def forward(self, x): |
| return F.linear(x, self.weight, self.bias) |
| |
| class LinearPrePacked(torch.nn.Module): |
| def __init__(self, weight, bias=None): |
| super(LinearPrePacked, self).__init__() |
| self.packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias) |
| |
| def forward(self, x): |
| return torch.ops.prepacked.linear_clamp_run(x, self.packed_weight_bias) |
| |
| data_shape = [batch_size] + list(data_shape) |
| weight = torch.rand((weight_output_dim, data_shape[-1])) |
| if use_bias: |
| bias = torch.rand((weight_output_dim)) |
| else: |
| bias = None |
| scripted_linear = torch.jit.script(Linear(weight, bias)) |
| scripted_linear_clamp_prepacked = torch.jit.script(LinearPrePacked(weight, bias)) |
| input_data = torch.rand(data_shape) |
| if ((format is not None) and ((format != torch.channels_last) or (len(data_shape) == 4))): |
| input_data = input_data.contiguous(memory_format=format) |
| ref_result = scripted_linear(input_data) |
| output_linearprepacked = scripted_linear_clamp_prepacked(input_data) |
| torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3) |
| |
| # Serialize the modules and then deserialize |
| input_data = torch.rand(data_shape) |
| if ((format is not None) and ((format != torch.channels_last) or (len(data_shape) == 4))): |
| input_data = input_data.contiguous(memory_format=format) |
| buffer = io.BytesIO() |
| torch.jit.save(scripted_linear, buffer) |
| buffer.seek(0) |
| deserialized_linear = torch.jit.load(buffer) |
| buffer = io.BytesIO() |
| torch.jit.save(scripted_linear_clamp_prepacked, buffer) |
| buffer.seek(0) |
| deserialized_linear_clamp_prepacked = torch.jit.load(buffer) |
| ref_result = deserialized_linear(input_data) |
| output_linearprepacked = deserialized_linear_clamp_prepacked(input_data) |
| torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3) |
| |
| @given(batch_size=st.integers(0, 3), |
| input_channels_per_group=st.integers(1, 32), |
| height=st.integers(5, 64), |
| width=st.integers(5, 64), |
| output_channels_per_group=st.integers(1, 32), |
| groups=st.integers(1, 16), |
| kernel_h=st.integers(1, 7), |
| kernel_w=st.integers(1, 7), |
| stride_h=st.integers(1, 2), |
| stride_w=st.integers(1, 2), |
| pad_h=st.integers(0, 2), |
| pad_w=st.integers(0, 2), |
| dilation=st.integers(1, 2), |
| use_bias=st.booleans(), |
| format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last])) |
| def test_conv2d(self, |
| batch_size, |
| input_channels_per_group, |
| height, |
| width, |
| output_channels_per_group, |
| groups, |
| kernel_h, |
| kernel_w, |
| stride_h, |
| stride_w, |
| pad_h, |
| pad_w, |
| dilation, |
| use_bias, |
| format): |
| class Conv2D(torch.nn.Module): |
| def __init__(self, weight, bias, strides, paddings, dilations, groups): |
| super(Conv2D, self).__init__() |
| self.weight = weight |
| self.bias = bias |
| self.strides = strides |
| self.paddings = paddings |
| self.dilations = dilations |
| self.groups = groups |
| |
| def forward(self, x): |
| return F.conv2d(x, self.weight, self.bias, |
| self.strides, self.paddings, self.dilations, self.groups) |
| |
| class Conv2DPrePacked(torch.nn.Module): |
| def __init__(self, weight, bias, strides, paddings, dilations, groups): |
| super(Conv2DPrePacked, self).__init__() |
| self.packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(weight, bias, |
| strides, paddings, dilations, groups) |
| |
| def forward(self, x): |
| return torch.ops.prepacked.conv2d_clamp_run(x, self.packed_weight_bias) |
| |
| input_channels = input_channels_per_group * groups |
| output_channels = output_channels_per_group * groups |
| kernels = (kernel_h, kernel_w) |
| strides = (stride_h, stride_w) |
| paddings = (pad_h, pad_w) |
| dilations = (dilation, dilation) |
| assume(height + 2 * paddings[0] >= |
| dilations[0] * (kernels[0] - 1) + 1) |
| assume(width + 2 * paddings[1] >= |
| dilations[1] * (kernels[1] - 1) + 1) |
| |
| input_data = torch.rand((batch_size, input_channels, height, width)) |
| if (format is not None): |
| input_data = input_data.contiguous(memory_format=format) |
| weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w)) |
| bias = None |
| if use_bias: |
| bias = torch.rand((output_channels)) |
| |
| scripted_conv2d = torch.jit.script(Conv2D(weight, bias, |
| strides, paddings, dilations, groups)) |
| scripted_conv2d_clamp_prepacked = torch.jit.script(Conv2DPrePacked( |
| weight, bias, strides, paddings, dilations, groups)) |
| ref_result = scripted_conv2d(input_data) |
| xnnpack_result = scripted_conv2d_clamp_prepacked(input_data) |
| torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3) |
| |
| # Serialize the modules and then deserialize |
| input_data = torch.rand((batch_size, input_channels, height, width)) |
| if (format is not None): |
| input_data = input_data.contiguous(memory_format=format) |
| buffer = io.BytesIO() |
| torch.jit.save(scripted_conv2d, buffer) |
| buffer.seek(0) |
| deserialized_conv2d = torch.jit.load(buffer) |
| buffer = io.BytesIO() |
| torch.jit.save(scripted_conv2d_clamp_prepacked, buffer) |
| buffer.seek(0) |
| deserialized_conv2d_clamp_prepacked = torch.jit.load(buffer) |
| ref_result = deserialized_conv2d(input_data) |
| xnnpack_result = deserialized_conv2d_clamp_prepacked(input_data) |
| torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3) |
| |
| @given(batch_size=st.integers(0, 3), |
| input_channels_per_group=st.integers(1, 32), |
| height=st.integers(5, 64), |
| width=st.integers(5, 64), |
| output_channels_per_group=st.integers(1, 32), |
| groups=st.integers(1, 16), |
| kernel_h=st.integers(1, 7), |
| kernel_w=st.integers(1, 7), |
| stride_h=st.integers(1, 2), |
| stride_w=st.integers(1, 2), |
| pad_h=st.integers(0, 2), |
| pad_w=st.integers(0, 2), |
| dilation=st.integers(1, 2), |
| linear_weight_output_dim=st.integers(2, 64), |
| use_bias=st.booleans(), |
| format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last])) |
| def test_combined_model(self, |
| batch_size, |
| input_channels_per_group, |
| height, |
| width, |
| output_channels_per_group, |
| groups, |
| kernel_h, |
| kernel_w, |
| stride_h, |
| stride_w, |
| pad_h, |
| pad_w, |
| dilation, |
| linear_weight_output_dim, |
| use_bias, |
| format): |
| class M(torch.nn.Module): |
| def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias, |
| strides, paddings, dilations, groups): |
| super(M, self).__init__() |
| self.conv_weight = conv_weight |
| self.conv_bias = conv_bias |
| self.linear_weight = linear_weight |
| self.linear_bias = linear_bias |
| self.strides = strides |
| self.paddings = paddings |
| self.dilations = dilations |
| self.groups = groups |
| |
| def forward(self, x): |
| o = F.conv2d(x, self.conv_weight, self.conv_bias, |
| self.strides, self.paddings, self.dilations, self.groups) |
| o = o.permute([0, 2, 3, 1]) |
| o = F.linear(o, self.linear_weight, self.linear_bias) |
| return F.relu(o) |
| |
| class MPrePacked(torch.nn.Module): |
| def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias, |
| strides, paddings, dilations, groups): |
| super(MPrePacked, self).__init__() |
| self.conv2d_clamp_run_weight_bias = \ |
| torch.ops.prepacked.conv2d_clamp_prepack(conv_weight, conv_bias, |
| strides, paddings, dilations, groups) |
| self.linear_clamp_run_weight_bias = \ |
| torch.ops.prepacked.linear_clamp_prepack(linear_weight, linear_bias) |
| |
| def forward(self, x): |
| o = torch.ops.prepacked.conv2d_clamp_run(x, self.conv2d_clamp_run_weight_bias) |
| o = o.permute([0, 2, 3, 1]) |
| o = torch.ops.prepacked.linear_clamp_run(o, self.linear_clamp_run_weight_bias) |
| return F.relu(o) |
| |
| input_channels = input_channels_per_group * groups |
| output_channels = output_channels_per_group * groups |
| kernels = (kernel_h, kernel_w) |
| strides = (stride_h, stride_w) |
| paddings = (pad_h, pad_w) |
| dilations = (dilation, dilation) |
| assume(height + 2 * paddings[0] |
| >= dilations[0] * (kernels[0] - 1) + 1) |
| assume(width + 2 * paddings[1] |
| >= dilations[1] * (kernels[1] - 1) + 1) |
| |
| input_data = torch.rand((batch_size, input_channels, height, width)) |
| if (format is not None): |
| input_data = input_data.contiguous(memory_format=format) |
| conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w)) |
| conv_bias = None |
| if use_bias: |
| conv_bias = torch.rand((output_channels)) |
| |
| # This is done just to find the output shape of the result |
| # so that the shape of weight for the following linear layer |
| # can be determined. |
| result = F.conv2d(input_data, conv_weight, conv_bias, |
| strides, paddings, dilations, groups) |
| linear_input_shape = result.shape[1] |
| |
| linear_weight = torch.rand((linear_weight_output_dim, linear_input_shape)) |
| linear_bias = None |
| if use_bias: |
| linear_bias = torch.rand((linear_weight_output_dim)) |
| |
| scripted_m = torch.jit.script(M(conv_weight, conv_bias, linear_weight, |
| linear_bias, strides, paddings, dilations, groups)) |
| scripted_m_prepacked = torch.jit.script( |
| MPrePacked( |
| conv_weight, |
| conv_bias, |
| linear_weight, |
| linear_bias, |
| strides, |
| paddings, |
| dilations, |
| groups)) |
| ref_result = scripted_m(input_data) |
| xnnpack_result = scripted_m_prepacked(input_data) |
| torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3) |
| |
| # Serialize the modules and then deserialize |
| input_data = torch.rand((batch_size, input_channels, height, width)) |
| input_data = input_data.contiguous(memory_format=torch.channels_last) |
| buffer = io.BytesIO() |
| torch.jit.save(scripted_m, buffer) |
| buffer.seek(0) |
| deserialized_m = torch.jit.load(buffer) |
| buffer = io.BytesIO() |
| torch.jit.save(scripted_m_prepacked, buffer) |
| buffer.seek(0) |
| deserialized_m_prepacked = torch.jit.load(buffer) |
| ref_result = deserialized_m(input_data) |
| xnnpack_result = deserialized_m_prepacked(input_data) |
| torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3) |
| |
| |
| @unittest.skipUnless(torch.backends.xnnpack.enabled, |
| " XNNPACK must be enabled for these tests." |
| " Please build with USE_XNNPACK=1.") |
| class TestXNNPACKRewritePass(TestCase): |
| def test_linear(self): |
| def validate_transformed_module( |
| module_instance, |
| pattern_count_map, |
| data_shape, |
| prepack_removal=False, |
| fuse_clamping_ops=False): |
| scripted_model = torch.jit.script(module_instance) |
| scripted_model.eval() |
| input_data = torch.normal(1, 20, size=data_shape) |
| ref_result = scripted_model(input_data) |
| torch._C._jit_pass_insert_prepacked_ops(scripted_model._c) |
| if fuse_clamping_ops or prepack_removal: |
| scripted_model._c = torch._C._freeze_module(scripted_model._c) |
| if fuse_clamping_ops: |
| torch._C._jit_pass_fuse_clamp_w_prepacked_linear_conv(scripted_model._c) |
| if (prepack_removal): |
| torch._C._jit_pass_fold_prepacking_ops(scripted_model._c) |
| |
| buffer = io.BytesIO() |
| torch.jit.save(scripted_model, buffer) |
| buffer.seek(0) |
| deserialized_scripted_model = torch.jit.load(buffer) |
| for pattern, v in pattern_count_map.items(): |
| if (v == 0): |
| FileCheck().check(pattern).run(deserialized_scripted_model.graph) |
| elif (v == -1): |
| FileCheck().check_not(pattern).run(deserialized_scripted_model.graph) |
| else: |
| FileCheck().check_count(pattern, v, exactly=True).run(deserialized_scripted_model.graph) |
| xnnpack_result = deserialized_scripted_model(input_data) |
| torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3) |
| |
| data_shape = [2, 3, 32] |
| weight_output_dim = 24 |
| weight_shape = (weight_output_dim, data_shape[-1]) |
| |
| class Linear(torch.nn.Module): |
| def __init__(self): |
| super(Linear, self).__init__() |
| self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape))) |
| self.bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim)))) |
| |
| def forward(self, x): |
| return F.linear(x, self.weight, self.bias) |
| |
| class LinearNoBias(torch.nn.Module): |
| def __init__(self): |
| super(LinearNoBias, self).__init__() |
| self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape))) |
| |
| def forward(self, x): |
| return F.linear(x, self.weight, None) |
| |
| # Linear with bias pattern. |
| pattern_count_map = {"Tensor = prim::CallFunction": -1, |
| "prepacked::linear_clamp_prepack": 1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(Linear(), pattern_count_map, data_shape) |
| validate_transformed_module(LinearNoBias(), pattern_count_map, data_shape) |
| |
| # Conv params |
| batch_size = 2 |
| input_channels_per_group = 6 |
| height = 16 |
| width = 16 |
| output_channels_per_group = 6 |
| groups = 4 |
| kernel_h = kernel_w = 3 |
| stride_h = stride_w = 1 |
| pad_h = pad_w = 1 |
| dilation = 1 |
| input_channels = input_channels_per_group * groups |
| output_channels = output_channels_per_group * groups |
| kernels = (kernel_h, kernel_w) |
| strides = (stride_h, stride_w) |
| paddings = (pad_h, pad_w) |
| dilations = (dilation, dilation) |
| conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w) |
| conv_bias_shape = (output_channels) |
| |
| class Conv2D(torch.nn.Module): |
| def __init__(self): |
| super(Conv2D, self).__init__() |
| self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape))) |
| self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape))) |
| self.strides = strides |
| self.paddings = paddings |
| self.dilations = dilations |
| self.groups = groups |
| |
| def forward(self, x): |
| return F.conv2d(x, self.weight, self.bias, |
| self.strides, self.paddings, self.dilations, self.groups) |
| |
| data_shape = (batch_size, input_channels, height, width) |
| pattern_count_map = {"Tensor = aten::conv2d": -1, |
| "prepacked::conv2d_clamp_prepack": 1, |
| "prepacked::conv2d_clamp_run": 1} |
| validate_transformed_module(Conv2D(), pattern_count_map, data_shape) |
| |
| input_data = torch.rand((batch_size, input_channels, height, width)) |
| conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w)) |
| conv_bias = torch.rand((output_channels)) |
| result = F.conv2d(input_data, conv_weight, conv_bias, |
| strides, paddings, dilations, groups) |
| linear_input_shape = result.shape[1] |
| linear_weight_shape = (weight_output_dim, linear_input_shape) |
| |
| class M(torch.nn.Module): |
| def __init__(self, activation_fn=F.relu): |
| super(M, self).__init__() |
| self.conv_weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape))) |
| self.conv_bias = torch.nn.Parameter(torch.Tensor(torch.rand((conv_bias_shape)))) |
| self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape))) |
| self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim)))) |
| self.strides = strides |
| self.paddings = paddings |
| self.dilations = dilations |
| self.groups = groups |
| self.activation_fn = activation_fn |
| |
| def forward(self, x): |
| o = F.conv2d(x, self.conv_weight, self.conv_bias, |
| self.strides, self.paddings, self.dilations, self.groups) |
| o = self.activation_fn(o) |
| o = o.permute([0, 2, 3, 1]) |
| o = F.linear(o, self.linear_weight, self.linear_bias) |
| return self.activation_fn(o) |
| |
| pattern_count_map = {"Tensor = aten::conv2d": -1, |
| "prepacked::conv2d_clamp_prepack": 1, |
| "prepacked::conv2d_clamp_run": 1, |
| "prepacked::linear_clamp_prepack": 1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(M(), pattern_count_map, data_shape) |
| pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1 |
| pattern_count_map["Tensor = prim::CallFunction"] = -1 |
| pattern_count_map["prepacked::linear_clamp_prepack"] = -1 |
| validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True) |
| |
| # Not inplace relu fusion test. |
| pattern_count_map = {"aten::relu": 2, |
| "prepacked::conv2d_clamp_prepack": -1, |
| "prepacked::conv2d_clamp_run": 1, |
| "prepacked::linear_clamp_prepack": -1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True) |
| pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1 |
| pattern_count_map["prepacked::linear_clamp_prepack"] = -1 |
| pattern_count_map["aten::relu"] = -1 |
| validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True, fuse_clamping_ops=True) |
| |
| # Inplace relu fusion test. |
| pattern_count_map = {"aten::relu": 2, |
| "prepacked::conv2d_clamp_prepack": -1, |
| "prepacked::conv2d_clamp_run": 1, |
| "prepacked::linear_clamp_prepack": -1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(M(F.relu_), pattern_count_map, data_shape, prepack_removal=True) |
| pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1 |
| pattern_count_map["prepacked::linear_clamp_prepack"] = -1 |
| pattern_count_map["aten::relu"] = -1 |
| validate_transformed_module(M(F.relu_), pattern_count_map, data_shape, |
| prepack_removal=True, fuse_clamping_ops=True) |
| |
| # Not inplace hardtanh fusion test. |
| pattern_count_map = {"aten::hardtanh": 2, |
| "prepacked::conv2d_clamp_prepack": -1, |
| "prepacked::conv2d_clamp_run": 1, |
| "prepacked::linear_clamp_prepack": -1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(M(F.hardtanh), pattern_count_map, data_shape, prepack_removal=True) |
| pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1 |
| pattern_count_map["prepacked::linear_clamp_prepack"] = -1 |
| pattern_count_map["aten::hardtanh"] = -1 |
| validate_transformed_module(M(F.hardtanh), pattern_count_map, data_shape, |
| prepack_removal=True, fuse_clamping_ops=True) |
| |
| # Inplace hardtanh fusion test. |
| pattern_count_map = {"aten::hardtanh_": 2, |
| "prepacked::conv2d_clamp_prepack": -1, |
| "prepacked::conv2d_clamp_run": 1, |
| "prepacked::linear_clamp_prepack": -1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(M(F.hardtanh_), pattern_count_map, data_shape, prepack_removal=True) |
| pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1 |
| pattern_count_map["prepacked::linear_clamp_prepack"] = -1 |
| pattern_count_map["aten::hardtanh_"] = -1 |
| validate_transformed_module(M(F.hardtanh_), pattern_count_map, data_shape, |
| prepack_removal=True, fuse_clamping_ops=True) |
| |
| class MFusionAntiPattern(torch.nn.Module): |
| def __init__(self): |
| super(MFusionAntiPattern, self).__init__() |
| self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape))) |
| self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim)))) |
| self.strides = strides |
| self.paddings = paddings |
| self.dilations = dilations |
| self.groups = groups |
| |
| def forward(self, x): |
| o = F.linear(x, self.linear_weight, self.linear_bias) |
| o = F.relu(o) |
| o = F.hardtanh(o) |
| return o |
| |
| # Unfusable hardtanh. |
| pattern_count_map = {"aten::hardtanh": 1, # hardtanh cannot be. |
| "aten::relu": -1, # relu is fused. |
| "prepacked::linear_clamp_prepack": -1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(MFusionAntiPattern(), pattern_count_map, (16, linear_weight_shape[1]), |
| prepack_removal=True, fuse_clamping_ops=True) |
| |
| class MFusionAntiPatternParamMinMax(torch.nn.Module): |
| def __init__(self): |
| super(MFusionAntiPatternParamMinMax, self).__init__() |
| self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape))) |
| self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim)))) |
| self.strides = strides |
| self.paddings = paddings |
| self.dilations = dilations |
| self.groups = groups |
| |
| def forward(self, x): |
| min = x[0, 0] |
| max = min + 10 |
| o = F.linear(x, self.linear_weight, self.linear_bias) |
| o = F.hardtanh(o, min, max) |
| return o |
| |
| # Unfusable hardtanh. |
| pattern_count_map = {"aten::hardtanh": 1, # hardtanh cannot be. |
| "prepacked::linear_clamp_prepack": -1, |
| "prepacked::linear_clamp_run": 1} |
| validate_transformed_module(MFusionAntiPatternParamMinMax(), pattern_count_map, (16, linear_weight_shape[1]), |
| prepack_removal=True, fuse_clamping_ops=True) |
| |
| |
| if __name__ == "__main__": |
| run_tests() |