blob: 93ddd1f2719fa187e6f9b8aff96484eeb3026ea8 [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import unittest
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
import torch
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, run_tests, TemporaryFileName
from torch.autograd.gradcheck import gradgradcheck, gradcheck
# Comment the line below to find out the CI machines having MKL-DNN build disabled
@unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled")
class TestMkldnn(TestCase):
def test_conversion(self):
for cpu_tensor in [torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')),
torch.randn((1, 2, 3, 4, 5),
dtype=torch.float, device=torch.device('cpu'))[:, :, :, :, 1]]:
cpu_tensor.requires_grad_()
mkldnn_tensor = cpu_tensor.to_mkldnn()
cpu_tensor_1 = mkldnn_tensor.to_dense()
self.assertEqual(cpu_tensor, cpu_tensor_1)
self.assertEqual(mkldnn_tensor.dtype, torch.float)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4]))
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size())
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
def test_unsupported(self):
# unsupported types and unsupported types with gpu
for dtype in [torch.double, torch.half, torch.uint8, torch.int8,
torch.short, torch.int, torch.long]:
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cpu')).to_mkldnn()
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cuda')).to_mkldnn()
# supported type with gpu
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=torch.float, device=torch.device('cuda')).to_mkldnn()
# some factory functions
for creator in [torch.ones, torch.randn, torch.rand]:
with self.assertRaises(RuntimeError) as context:
creator(1, 2, 3, 4, dtype=torch.float, device=torch.device('cpu'), layout=torch._mkldnn)
def test_autograd_to_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True)
def func(root):
return root.to_mkldnn().to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradgradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_autograd_from_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
def func(root):
return root.to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_detach(self):
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
detach = root.detach()
self.assertEqual((4, 5), detach.size())
self.assertFalse(detach.requires_grad)
self.assertTrue(root.requires_grad)
detach_ = root.detach_()
self.assertEqual((4, 5), detach_.size())
self.assertFalse(detach_.requires_grad)
self.assertFalse(root.requires_grad)
def test_repr(self):
self.assertTrue("layout=torch._mkldnn" in str(torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')).to_mkldnn()))
def test_conv2d(self):
for groups in [1, 4]:
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(1, 3, (1,)).item() * groups
M = torch.randint(1, 3, (1,)).item() * groups
x = torch.randn(N, C, 224, 224, dtype=torch.float32)
for bias in [True, False]:
conv2d = torch.nn.Conv2d(in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
bias=bias,
groups=groups).float()
mkldnn_conv2d = mkldnn_utils.to_mkldnn(copy.deepcopy(conv2d))
with torch.backends.mkldnn.flags(enabled=False):
y_aten = conv2d(x)
y_mkldnn = mkldnn_conv2d(x.to_mkldnn()).to_dense()
self.assertEqual(y_aten, y_mkldnn)
self._test_serialization(mkldnn_conv2d, (x.to_mkldnn(),))
self._test_tracing(mkldnn_conv2d, (x.to_mkldnn(),))
def test_conv2d_legacy_jit_model(self):
"""
MKLDNN integration used to serialize models with 5d weight for grouped
convolutions, we'd like to preserve this behavior
"""
g = 4
conv2d = torch.nn.Conv2d(16, 16, 3, groups=g)
conv2d_mkldnn = torch.utils.mkldnn.to_mkldnn(conv2d)
# contrive legacy conv2d module with a 5-d weight
o, i, h, w = conv2d.weight.shape
weight_5d = conv2d.weight.reshape((g, o // g, i, h, w))
conv2d_mkldnn.weight = weight_5d.to_mkldnn()
x = torch.randn(1, 16, 8, 8)
with TemporaryFileName() as fname:
torch.jit.save(conv2d_mkldnn, fname)
conv2d_loaded = torch.jit.load(fname)
self.assertEqual(conv2d_mkldnn.weight.ndimension(), 5)
self.assertEqual(conv2d_loaded.weight.ndimension(), 4)
self.assertEqual(
conv2d(x),
conv2d_loaded(x.to_mkldnn()).to_dense())
def test_relu(self):
x = torch.randn((4, 5), dtype=torch.float32) * 10
self.assertEqual(torch.relu(x), torch.relu(x.to_mkldnn()).to_dense())
def test_relu_(self):
x1 = torch.randn((4, 5), dtype=torch.float32) * 10
x2 = x1.clone().to_mkldnn()
self.assertEqual(torch.relu_(x1), torch.relu_(x2).to_dense())
def test_max_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for stride in [1, 2, 3]:
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
for ceil_mode in [False, True]:
max_pool2d = torch.nn.MaxPool2d(
kernel_size=3 if not ceil_mode else 7,
stride=stride,
padding=1,
ceil_mode=ceil_mode)
self.assertEqual(
max_pool2d(x),
max_pool2d(x.to_mkldnn()).to_dense())
def test_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
for count_include_pad in [True, False]:
avg_pool2d = torch.nn.AvgPool2d(
kernel_size=3,
stride=2,
padding=1,
count_include_pad=count_include_pad)
self.assertEqual(
avg_pool2d(x),
avg_pool2d(x.to_mkldnn()).to_dense())
def test_adaptive_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100
adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
self.assertEqual(
adaptive_avg_pool2d(x),
adaptive_avg_pool2d(x.to_mkldnn()).to_dense())
def test_batch_norm2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
# TODO: support training
for train in [False]:
bn = torch.nn.BatchNorm2d(C).float().train(train)
mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn))
self.assertEqual(
bn(x),
mkldnn_bn(x.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_bn, (x.to_mkldnn(),))
self._test_tracing(mkldnn_bn, (x.to_mkldnn(),))
def test_add(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
alpha = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# add
self.assertEqual(
x + y,
(mx + my).to_dense())
self.assertEqual(
torch.add(x, y, alpha=alpha),
torch.add(mx, my, alpha=alpha).to_dense())
# add_
x += y
mx += my
self.assertEqual(x, mx.to_dense())
# add_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.add(x, y, alpha=alpha, out=out)
torch.add(mx, my, alpha=alpha, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
def test_mul(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
value = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# mul
self.assertEqual(
x * y,
(mx * my).to_dense())
self.assertEqual(
x * value,
(mx * value).to_dense())
self.assertEqual(
torch.mul(x, y),
torch.mul(mx, my).to_dense())
self.assertEqual(
torch.mul(x, value),
torch.mul(mx, value).to_dense())
# mul_
x *= y
mx *= my
self.assertEqual(x, mx.to_dense())
x *= value
mx *= value
self.assertEqual(x, mx.to_dense())
# mul_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, y, out=out)
torch.mul(mx, my, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, value, out=out)
torch.mul(mx, value, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
def test_view(self):
x = torch.randn(3, 4, 5, dtype=torch.float32).to_mkldnn()
self.assertRaisesRegex(RuntimeError,
"Change to use reshape",
lambda: x.view(x.size(0), -1))
def test_reshape(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
size = (x.size(0), -1)
self.assertEqual(
x.reshape(size),
x.to_mkldnn().reshape(size).to_dense(),
)
# test whether share same memory for plain format tensor
y = x.to_mkldnn()
z = y.reshape(size).add_(y.reshape(size))
self.assertEqual(
y.reshape(size).to_dense(),
z.to_dense(),
)
def test_reshape_blocked_format(self):
# construct an mkldnn blocked tensor with mkldnn conv2d
C = 7
m = mkldnn_utils.to_mkldnn(torch.nn.Conv2d(C, C, 3))
x = torch.randn(1, C, 8, 8).to_mkldnn()
# mkldnn tensor w/ blocked format
y_block = m(x)
# aten tensor w/ plain format
y_plain = y_block.to_dense()
y_block_reshape = y_block.reshape(C, -1)
y_plain_reshape = y_plain.reshape(C, -1)
self.assertEqual(y_plain_reshape, y_block_reshape.to_dense())
def test_clone(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
self.assertEqual(
x.clone(),
x.to_mkldnn().clone().to_dense(),
)
# test whether share same memory
y = x.to_mkldnn()
z = y.clone().add_(y)
self.assertNotEqual(
y.to_dense(),
z.to_dense(),
)
def test_transpose(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim1 in range(x.ndim):
for dim2 in range(x.ndim):
self.assertEqual(
x.transpose(dim1, dim2),
x.to_mkldnn().transpose(dim1, dim2).to_dense(),
)
def test_linear(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
for bias in [True, False]:
linear = torch.nn.Linear(in_features, out_features, bias=bias).float()
mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear))
self.assertEqual(
linear(x),
mkldnn_linear(x.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_linear, (x.to_mkldnn(),))
self._test_tracing(mkldnn_linear, (x.to_mkldnn(),))
def test_softmax(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim in range(x.ndim):
softmax = torch.nn.Softmax(dim=dim)
self.assertEqual(
softmax(x),
softmax(x.to_mkldnn()).to_dense())
def test_sigmoid(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
mkldnn_x = x.to_mkldnn()
self.assertEqual(
torch.sigmoid(x),
torch.sigmoid(mkldnn_x).to_dense(),
)
# inplace
torch.sigmoid_(x)
torch.sigmoid_(mkldnn_x)
self.assertEqual(x, mkldnn_x.to_dense())
def _test_serialization(self, module, inputs):
with TemporaryFileName() as fname:
torch.jit.save(module, fname)
loaded = torch.jit.load(fname)
self.assertEqual(
module(*inputs).to_dense(),
loaded(*inputs).to_dense())
def _test_tracing(self, module, inputs):
traced = torch.jit.trace(module, inputs, check_trace=False)
self.assertEqual(
module(*inputs).to_dense(),
traced(*inputs).to_dense())
def test_set_data_tensorimpl_type(self):
# Dense tensor has impl of type `TensorImpl`, while MKL-DNN tensor has impl
# of type `OpaqueTensorImpl<IDeepTensorWrapperPtr>`.
x = torch.randn((1, 2), dtype=torch.float, device=torch.device('cpu'))
x_mkldnn = x.to_mkldnn()
with self.assertRaisesRegex(RuntimeError, 'incompatible tensor type'):
x.data = x_mkldnn
def test_empty(self):
x1 = torch.empty(4, 5, 2, 3, dtype=torch.float32)
x2 = torch.empty(4, 5, 2, 3, dtype=torch.float32, layout=torch._mkldnn)
self.assertEqual(x1.size(), x2.to_dense().size())
self.assertEqual(x1.dtype, x2.to_dense().dtype)
def test_zero_(self):
x1 = torch.randn(4, 5, dtype=torch.float32) * 10
x2 = x1.clone().to_mkldnn()
self.assertEqual(
x1.zero_(),
x2.zero_().to_dense(),
)
def test_is_mkldnn(self):
x = torch.randn(1, dtype=torch.float32)
self.assertFalse(x.is_mkldnn)
self.assertTrue(x.to_mkldnn().is_mkldnn)
# legacy constructor/new doesn't support mkldnn tensors
def test_legacy_new_failure(self):
x = torch.randn(1, dtype=torch.float32)
x_mkldnn = x.to_mkldnn()
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(x.storage()))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(x))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(torch.Size([2, 3])))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new([6]))
def test_is_mkldnn_jit(self):
class EnsureMkldnn(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
if not x.is_mkldnn:
x = x.to_mkldnn()
return x
m = EnsureMkldnn()
x = torch.randn(1, dtype=torch.float32)
self.assertTrue(m(x).is_mkldnn)
self.assertTrue(m(x.to_mkldnn()).is_mkldnn)
def _test_imagenet_model(self, model):
model = model.train(False).float()
mkldnn_model = mkldnn_utils.to_mkldnn(copy.deepcopy(model))
x = torch.randn(1, 3, 224, 224, dtype=torch.float32)
with torch.no_grad():
self.assertEqual(
model(x),
mkldnn_model(x.to_mkldnn()).to_dense(),
)
@skipIfNoTorchVision
def test_resnet18(self):
model = torchvision.models.resnet.resnet18(pretrained=False)
self._test_imagenet_model(model)
@skipIfNoTorchVision
def test_resnext50_32x4d(self):
model = torchvision.models.resnet.resnext50_32x4d(pretrained=False)
self._test_imagenet_model(model)
if __name__ == '__main__':
run_tests()